Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentifying Volatile Chemical Product Tracer Compounds in U.S. Cities    Next AbstractThe Gulf Coast tick: evidence of a pheromone produced by males »

Environ Sci Technol


Title:Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities
Author(s):Gkatzelis GI; Coggon MM; McDonald BC; Peischl J; Gilman JB; Aikin KC; Robinson MA; Canonaco F; Prevot ASH; Trainer M; Warneke C;
Address:"NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. Forschungszentrum Julich, Julich 52425, Germany. Datalystica Ltd., ParkinnovAARE, Villigen CH-5232, Switzerland. Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen CH-5232, Switzerland"
Journal Title:Environ Sci Technol
Year:2021
Volume:20210315
Issue:8
Page Number:4332 - 4343
DOI: 10.1021/acs.est.0c05471
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Despite decades of declining air pollution, urban U.S. areas are still affected by summertime ozone and wintertime particulate matter exceedance events. Volatile organic compounds (VOCs) are known precursors of secondary organic aerosol (SOA) and photochemically produced ozone. Urban VOC emission sources, including on-road transportation emissions, have decreased significantly over the past few decades through successful regulatory measures. These drastic reductions in VOC emissions have led to a change in the distribution of urban emissions and noncombustion sources of VOCs such as those from volatile chemical products (VCPs), which now account for a higher fraction of the urban VOC burden. Given this shift in emission sources, it is essential to quantify the relative contribution of VCP and mobile source emissions to urban pollution. Herein, ground site and mobile laboratory measurements of VOCs were performed. Two ground site locations with different population densities, Boulder, CO, and New York City (NYC), NY, were chosen in order to evaluate the influence of VCPs in cities with varying mixtures of VCPs and mobile source emissions. Positive matrix factorization was used to attribute hundreds of compounds to mobile- and VCP-dominated sources. VCP-dominated emissions contributed to 42 and 78% of anthropogenic VOC emissions for Boulder and NYC, respectively, while mobile source emissions contributed 58 and 22%. Apportioned VOC emissions were compared to those estimated from the Fuel-based Inventory of Vehicle Emissions and VCPs and agreed to within 25% for the bulk comparison and within 30% for more than half of individual compounds. The evaluated inventory was extended to other U.S. cities and it suggests that 50 to 80% of emissions, reactivity, and the SOA-forming potential of urban anthropogenic VOCs are associated with VCP-dominated sources, demonstrating their important role in urban U.S. air quality"
Keywords:*Air Pollutants/analysis Cities Environmental Monitoring New York City *Ozone/analysis Particulate Matter/analysis Vehicle Emissions/analysis *Volatile Organic Compounds/analysis;
Notes:"MedlineGkatzelis, Georgios I Coggon, Matthew M McDonald, Brian C Peischl, Jeff Gilman, Jessica B Aikin, Kenneth C Robinson, Michael A Canonaco, Francesco Prevot, Andre S H Trainer, Michael Warneke, Carsten eng Research Support, Non-U.S. Gov't 2021/03/16 Environ Sci Technol. 2021 Apr 20; 55(8):4332-4343. doi: 10.1021/acs.est.0c05471. Epub 2021 Mar 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024