Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of geographical origin of Keemun black tea based on its volatile composition coupled with multivariate statistical analyses    Next AbstractDual-Phase Emission AIEgen with ICT Properties for VOC Chromic Sensing »

PeerJ


Title:Genome-wide identification and analysis of the thiolase family in insects
Author(s):Fang SM;
Address:"Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China. College of Life Science, China West Normal University, Nanchong, Sichuan, China"
Journal Title:PeerJ
Year:2020
Volume:20201120
Issue:
Page Number:e10393 -
DOI: 10.7717/peerj.10393
ISSN/ISBN:2167-8359 (Print) 2167-8359 (Electronic) 2167-8359 (Linking)
Abstract:"Thiolases are important enzymes involved in lipid metabolism in both prokaryotes and eukaryotes, and are essential for a range of metabolic pathways, while, little is known for this important family in insects. To shed light on the evolutionary models and functional diversities of the thiolase family, 137 thiolase genes were identified in 20 representative insect genomes. They were mainly classified into five classes, namely cytosolic thiolase (CT-thiolase), T1-thiolase, T2-thiolase, trifunctional enzyme thiolase (TFE-thiolase), and sterol carrier protein 2 thiolase (SCP2-thiolase). The intron number and exon/intron structures of the thiolase genes reserve large diversification. Subcellular localization prediction indicated that all the thiolase proteins were mitochondrial, cytosolic, or peroxisomal enzymes. Four highly conserved sequence fingerprints were found in the insect thiolase proteins, including CxS-, NEAF-, GHP-, and CxGGGxG-motifs. Homology modeling indicated that insect thiolases share similar 3D structures with mammals, fishes, and microorganisms. In Bombyx mori, microarray data and reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that some thiolases might be involved in steroid metabolism, juvenile hormone (JH), and sex pheromone biosynthesis pathways. In general, sequence and structural characteristics were relatively conserved among insects, bacteria and vertebrates, while different classes of thiolases might have differentiation in specific functions and physiological processes. These results will provide an important foundation for future functional validation of insect thiolases"
Keywords:Expression patterns Gene structure Insect Phylogeny Subcellular localization Thiolases;
Notes:"PubMed-not-MEDLINEFang, Shou-Min eng 2020/11/27 PeerJ. 2020 Nov 20; 8:e10393. doi: 10.7717/peerj.10393. eCollection 2020"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025