Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractOccurrence of volatile contaminants in recycled poly(ethylene terephthalate) by HS-SPME-GCxGC-QTOF-MS combined with chemometrics for authenticity assessment of geographical recycling regions    Next AbstractConvergent evolution of small molecule pheromones in Pristionchus nematodes »

Sci Total Environ


Title:Herbivory-induced maternal effects on growth and defense traits in the clonal species Alternanthera philoxeroides
Author(s):Dong BC; Fu T; Luo FL; Yu FH;
Address:"School of Nature Conservation, Beijing Forestry University, Beijing 100083, China. School of Nature Conservation, Beijing Forestry University, Beijing 100083, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China. Electronic address: feihaiyu@126.com"
Journal Title:Sci Total Environ
Year:2017
Volume:20170627
Issue:
Page Number:114 - 123
DOI: 10.1016/j.scitotenv.2017.06.141
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"Plants have evolved a variety of defense traits against foliar herbivory, including the production of primary and secondary metabolites, the allocation of chemical compounds, and morphological plasticity. Using two vegetative generations of the invasive clonal species Alternanthera philoxeroides, we investigated the effects of maternal and offspring herbivory by Planococcus minor on the integrative defense strategy of plants. Herbivory severely inhibited leaf, stolon and root growth, as well as the production of primary metabolites (soluble sugars, starch, and total non-structural carbohydrates in stolons), and decreased average leaf area and specific leaf area of the second-generation A. philoxeroides. The changes in growth measures of the first-generation A. philoxeroides with herbivory were consistent with that of the second generation. By contrast, herbivory basically did not affect the concentration of non-structural carbohydrate compounds in the roots, and even increased the concentrations of N and total phenols in taproots. Furthermore, herbivory-induced maternal effects also reduced the growth of the second-generation plants. The results suggest that A. philoxeroides is capable of adapting to herbivory by P. minor, mainly via the allocation of available resources in belowground organs, and that the herbivory effect can persist across vegetative generations. These features may potentially improve the regeneration and tolerance of A. philoxeroides after a short-term herbivory"
Keywords:Amaranthaceae/genetics/*growth & development Animals *Herbivory Introduced Species Planococcus Insect Secondary Metabolism Alternanthera philoxeroides Asexual reproduction Defense strategy Foliar herbivory Maternal effect Planococcus minor;
Notes:"MedlineDong, Bi-Cheng Fu, Ting Luo, Fang-Li Yu, Fei-Hai eng Netherlands 2017/07/01 Sci Total Environ. 2017 Dec 15; 605-606:114-123. doi: 10.1016/j.scitotenv.2017.06.141. Epub 2017 Jun 27"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 14-01-2025