Title: | Optimizations of packed sorbent and inlet temperature for large volume-direct aqueous injection-gas chromatography to determine high boiling volatile organic compounds in water |
Author(s): | Yu B; Song Y; Han L; Yu H; Liu Y; Liu H; |
Address: | "School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address: songyh2003@126.com. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address: liuhl2001@aliyun.com" |
DOI: | 10.1016/j.chroma.2014.06.033 |
ISSN/ISBN: | 1873-3778 (Electronic) 0021-9673 (Linking) |
Abstract: | "For the expanded application area, fast trace analysis of certain high boiling point (i.e., 150-250 degrees C) volatile organic compounds (HVOCs) in water, a large volume-direct aqueous injection-gas chromatography (LV-DAI-GC) method was optimized for the following parameters: packed sorbent for sample on-line pretreatment, inlet temperature and detectors configuration. Using the composite packed sorbent self-prepared with lithium chloride and a type of diatomite, the method enabled safe injection of an approximately 50-100 muL sample at an inlet temperature of 150 degrees C in the splitless mode and separated HVOCs from water matrix in 2 min. Coupled with a flame ionization detector (FID), an electron capture detector (ECD) and a flame photometric detector (FPD), the method could simultaneously quantify 27 HVOCs that belong to seven subclasses (i.e., halogenated aliphatic hydrocarbons, chlorobenzenes, nitrobenzenes, anilines, phenols, polycyclic aromatic hydrocarbons and organic sulfides) in 26 min. Injecting a 50 muL sample without any enrichment step, such as cryotrap focusing, the limits of quantification (LOQs) for the 27 HVOCs was 0.01-3 mug/L. Replicate analyses of the 27 HVOCs spiked source and river water samples exhibited good precision (relative standard deviations |
Keywords: | "Adsorption Bays Chromatography, Gas/methods Limit of Detection Lithium Chloride/chemistry Phenols/*analysis Polycyclic Aromatic Hydrocarbons/*analysis Rivers/chemistry Temperature Volatile Organic Compounds Water/*analysis Water Pollutants, Chemical/*anal;" |
Notes: | "MedlineYu, Bofan Song, Yonghui Han, Lu Yu, Huibin Liu, Yang Liu, Hongliang eng Research Support, Non-U.S. Gov't Netherlands 2014/07/07 J Chromatogr A. 2014 Aug 22; 1356:221-9. doi: 10.1016/j.chroma.2014.06.033. Epub 2014 Jun 19" |