Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes    Next Abstract[Research progress on chemical constituents and their differences between sea buckthorn berries and leaves] »

Int J Mol Sci


Title:Volatile Organic Compounds from Orchids: From Synthesis and Function to Gene Regulation
Author(s):Ramya M; Jang S; An HR; Lee SY; Park PM; Park PH;
Address:"Floriculture Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jellabuk-do 55365, Korea. World Vegetable Center Korea Office (WKO), Wanju-gun, Jellabuk-do 55365, Korea. Department of Horticultural Science and Biotechnology, Seoul National University (SNU), Seoul 08826, Korea"
Journal Title:Int J Mol Sci
Year:2020
Volume:20200210
Issue:3
Page Number: -
DOI: 10.3390/ijms21031160
ISSN/ISBN:1422-0067 (Electronic) 1422-0067 (Linking)
Abstract:"Orchids are one of the most significant plants that have ecologically adapted to every habitat on earth. Orchids show a high level of variation in their floral morphologies, which makes them popular as ornamental plants in the global market. Floral scent and color are key traits for many floricultural crops. Volatile organic compounds (VOCs) play vital roles in pollinator attraction, defense, and interaction with the environment. Recent progress in omics technology has led to the isolation of genes encoding candidate enzymes responsible for the biosynthesis and regulatory circuits of plant VOCs. Uncovering the biosynthetic pathways and regulatory mechanisms underlying the production of floral scents is necessary not only for a better understanding of the function of relevant genes but also for the generation of new cultivars with desirable traits through molecular breeding approaches. However, little is known about the pathways responsible for floral scents in orchids because of their long life cycle as well as the complex and large genome; only partial terpenoid pathways have been reported in orchids. Here, we review the biosynthesis and regulation of floral volatile compounds in orchids. In particular, we focused on the genes responsible for volatile compounds in various tissues and developmental stages in Cymbidium orchids. We also described the emission of orchid floral volatiles and their function in pollination ecology. Taken together, this review will provide a broad scope for the study of orchid floral scents"
Keywords:"Evolution, Molecular Flowers/genetics/metabolism *Gene Expression Regulation, Plant Orchidaceae/*genetics/metabolism Volatile Organic Compounds/*metabolism Cymbidium Orchidaceae floral scents pollination volatile organic compounds;"
Notes:"MedlineRamya, Mummadireddy Jang, Seonghoe An, Hye-Ryun Lee, Su-Young Park, Pil-Man Park, Pue Hee eng PJ01183202/Rural Development Administration/ Review Switzerland 2020/02/14 Int J Mol Sci. 2020 Feb 10; 21(3):1160. doi: 10.3390/ijms21031160"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-01-2025