Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSocial context influences chemical communication in D. melanogaster males    Next AbstractOn the trail of an authentic aphrodisiac »

Sci Total Environ


Title:"Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use"
Author(s):Kent R; Landon MK;
Address:"US Geological Survey California Water Science Center, San Diego, CA 95101-0812, USA. rhkent@usgs.gov"
Journal Title:Sci Total Environ
Year:2013
Volume:20130315
Issue:
Page Number:125 - 136
DOI: 10.1016/j.scitotenv.2013.02.042
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area"
Keywords:"Agriculture California Environmental Monitoring Groundwater/*analysis/chemistry Nitrates/*analysis Volatile Organic Compounds/analysis Water Pollutants, Chemical/*analysis Water Supply Water Wells/*analysis/chemistry;"
Notes:"MedlineKent, Robert Landon, Matthew K eng Research Support, Non-U.S. Gov't Netherlands 2013/03/19 Sci Total Environ. 2013 May 1; 452-453:125-36. doi: 10.1016/j.scitotenv.2013.02.042. Epub 2013 Mar 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024