Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPlant Volatiles and Herbivore Induced Plant Volatiles from Chili Pepper Act as Attractant of the Aphid Parasitoid Aphelinus varipes (Hymenoptera: Aphelinidae)    Next Abstract"Semi-Volatile Organic Compounds in Car Dust: A Pilot Study in Jeddah, Saudi Arabia" »

Cells


Title:"Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels"
Author(s):Ali MY; Naseem T; Holopainen JK; Liu T; Zhang J; Zhang F;
Address:"MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. CABI East & South-East Asia, Beijing 100081, China. Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan. Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland"
Journal Title:Cells
Year:2023
Volume:20230107
Issue:2
Page Number: -
DOI: 10.3390/cells12020251
ISSN/ISBN:2073-4409 (Electronic) 2073-4409 (Linking)
Abstract:"Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture"
Keywords:Humans Animals Female *Arthropods/metabolism Herbivory *Volatile Organic Compounds/metabolism Insecta/metabolism Agriculture Plants/metabolism biological control indirect defense insect herbivores natural enemies plant volatiles;
Notes:"MedlineAli, Muhammad Yasir Naseem, Tayyaba Holopainen, Jarmo K Liu, Tongxian Zhang, Jinping Zhang, Feng eng Research Support, Non-U.S. Gov't Review Switzerland 2023/01/22 Cells. 2023 Jan 7; 12(2):251. doi: 10.3390/cells12020251"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-01-2025