Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMolecular characterization and phylogenetic analysis of three odorant binding protein gene transcripts in Dendrolimus species (Lepidoptera: Lasiocampidae)    Next AbstractIdentification and Expression Profiling of Chemosensory Genes in Dendrolimus punctatus Walker »

Front Physiol


Title:Dynamic Changes in Chemosensory Gene Expression during the Dendrolimus punctatus Mating Process
Author(s):Zhang SF; Zhang Z; Kong XB; Wang HB; Liu F;
Address:"Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China"
Journal Title:Front Physiol
Year:2017
Volume:20180110
Issue:
Page Number:1127 -
DOI: 10.3389/fphys.2017.01127
ISSN/ISBN:1664-042X (Print) 1664-042X (Electronic) 1664-042X (Linking)
Abstract:"The insect chemosensory system is pivotal for interactions with their environments, and moths have especially sensitive olfaction. Exploration of the connection between the plasticity of olfactory-guided and molecular level pathways in insects is important for understanding the olfactory recognition mechanisms of insects. The pine caterpillar moth, Dendrolimus punctatus Walker, is a dominant conifer defoliator in China, and mating is the priority for adults of this species, during which sex pheromone recognition and oviposition site location are the main activities; these activities are all closely related to chemosensory genes. Thus, we aimed to identify chemosensory related genes and monitor the spectrum of their dynamic expression during the entire mating process in D. punctatus. In this study, we generated transcriptome data from male and female adult D. punctatus specimens at four mating stages: eclosion, calling, copulation, and post-coitum. These data were analyzed using bioinformatics tools to identify the major olfactory-related gene families and determine their expression patterns during mating. Levels of odorant binding proteins (OBPs), chemosensory proteins (CSPs), and odorant receptors (ORs) were closely correlated with mating behavior. Comparison with ORs from other Dendrolimus and Lepidoptera species led to the discovery of a group of ORs specific to Dendrolimus. Furthermore, we identified several genes encoding OBPs and ORs that were upregulated after mating in females; these genes may mediate the location of host plants for oviposition via plant-emitted volatiles. This work will facilitate functional research into D. punctatus chemosensory genes, provide information about the relationship between chemosensory genes and important physiological activities, and promote research into the mechanisms underlying insect olfactory recognition"
Keywords:chemosensory gene expression dynamic insect olfaction masson pine moth mating pheromone receptor;
Notes:"PubMed-not-MEDLINEZhang, Su-Fang Zhang, Zhen Kong, Xiang-Bo Wang, Hong-Bin Liu, Fu eng Switzerland 2018/01/30 Front Physiol. 2018 Jan 10; 8:1127. doi: 10.3389/fphys.2017.01127. eCollection 2017"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025