Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAggressive behaviour of Apis mellifera L. workers towards introduced queens. I. Behavioural mechanisms involved in the release of worker aggression    Next AbstractEstrogen control of scent marking female Mongolian gerbils (Meriones unguiculatus) »

J Chem Ecol


Title:Fertility Signaling and Partitioning of Reproduction in the Ant Neoponera apicalis
Author(s):Yagound B; Gouttefarde R; Leroy C; Belibel R; Barbaud C; Fresneau D; Chameron S; Poteaux C; Chaline N;
Address:"Laboratoire d'Ethologie Experimentale et Comparee, E.A. 4443, Universite Paris 13, Sorbonne Paris Cite, 93430, Villetaneuse, France, boris.yagound@leec.univ-paris13.fr"
Journal Title:J Chem Ecol
Year:2015
Volume:20150528
Issue:6
Page Number:557 - 566
DOI: 10.1007/s10886-015-0591-9
ISSN/ISBN:1573-1561 (Electronic) 0098-0331 (Linking)
Abstract:"All individuals in social insect colonies benefit from being informed about the presence and fertility state of reproducers. This allows the established reproductive individuals to maintain their reproductive monopoly without the need for physical control, and the non-reproductive individuals to make appropriate reproductive choices. Here, we studied whether fertility signaling is responsible for the partitioning of reproduction in the ant Neoponera apicalis. This species forms small colonies from one single-mated queen, with workers establishing reproductive hierarchies when hopelessly queenless. Previous studies identified putative fertility signals, particularly the hydrocarbon 13-methylpentacosane (13-MeC25), and have shown that precise status discrimination based on these signals could be involved in the regulation of reproductive activities. Here, we extend these findings and reveal that all individuals, be they queens or workers, differ in their cuticular hydrocarbon profile according to fertility state. Proportions of 13-MeC25 were a strong predictor of an individual's ovarian activity, and could, thus, advertise the established reproducer(s) in both queenright and queenless conditions. Furthermore, this compound might play a key role in the establishment of the reproductive hierarchy, since workers with low fertility at the onset of hierarchy formation already have relatively high amounts of 13-MeC25. Dyadic encounters showed that individuals with experimentally increased amounts of 13-MeC25 triggered less agonistic interactions from top rankers, in accord with them 'advertising' higher status. Thus, these bioassays supported the use of 13-MeC25 by competing ants. This simple recognition system potentially allows permanent regulation of partitioning of reproduction in this species"
Keywords:Animals Ants/*physiology Female Fertility Hydrocarbons/*metabolism Pheromones/*metabolism Reproduction Social Behavior;
Notes:"MedlineYagound, Boris Gouttefarde, Remi Leroy, Chloe Belibel, Rima Barbaud, Christel Fresneau, Dominique Chameron, Stephane Poteaux, Chantal Chaline, Nicolas eng Research Support, Non-U.S. Gov't 2015/05/29 J Chem Ecol. 2015 Jun; 41(6):557-66. doi: 10.1007/s10886-015-0591-9. Epub 2015 May 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024