Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDetecting Pulmonary Oxygen Toxicity Using eNose Technology and Associations between Electronic Nose and Gas Chromatography-Mass Spectrometry Data    Next AbstractAssessment of pulmonary oxygen toxicity in special operations forces divers under operational circumstances using exhaled breath analysis »

Front Physiol


Title:Markers of Pulmonary Oxygen Toxicity in Hyperbaric Oxygen Therapy Using Exhaled Breath Analysis
Author(s):Wingelaar TT; Brinkman P; van Ooij P; Hoencamp R; Maitland-van der Zee AH; Hollmann MW; van Hulst RA;
Address:"Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands. Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands. Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands. Department of Surgery, Alrijne Hospital Leiderdorp, Leiderdorp, Netherlands. Defense Healthcare Organisation, Ministry of Defence, Utrecht, Netherlands. Leiden University Medical Center, Leiden, Netherlands"
Journal Title:Front Physiol
Year:2019
Volume:20190424
Issue:
Page Number:475 -
DOI: 10.3389/fphys.2019.00475
ISSN/ISBN:1664-042X (Print) 1664-042X (Electronic) 1664-042X (Linking)
Abstract:"INTRODUCTION: Although hyperbaric oxygen therapy (HBOT) has beneficial effects, some patients experience fatigue and pulmonary complaints after several sessions. The current limits of hyperbaric oxygen exposure to prevent pulmonary oxygen toxicity (POT) are based on pulmonary function tests (PFT), but the limitations of PFT are recognized worldwide. However, no newer modalities to detect POT have been established. Exhaled breath analysis in divers have shown volatile organic compounds (VOCs) of inflammation and methyl alkanes. This study hypothesized that similar VOCs might be detected after HBOT. METHODS: Ten healthy volunteers of the Royal Netherlands Navy underwent six HBOT sessions (95 min at 253 kPa, including three 5-min 'air breaks'), i.e., on five consecutive days followed by another session after 2 days of rest. At 30 min before the dive, and at 30 min, 2 and 4 h post-dive, exhaled breath was collected and followed by PFT. Exhaled breath samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After univariate tests and correlation of retention times, ion fragments could be identified using a reference database. Using these fragments VOCs could be reconstructed, which were clustered using principal component analysis. These clusters were tested longitudinally with ANOVA. RESULTS: After GC-MS analysis, eleven relevant VOCs were identified which could be clustered into two principal components (PC). PC1 consisted of VOCs associated with inflammation and showed no significant change over time. The intensities of PC2, consisting of methyl alkanes, showed a significant decrease (p = 0.001) after the first HBOT session to 50.8%, remained decreased during the subsequent days (mean 82%), and decreased even further after 2 days of rest to 58% (compared to baseline). PFT remained virtually unchanged. DISCUSSION: Although similar VOCs were found when compared to diving, the decrease of methyl alkanes (PC2) is in contrast to the increase seen in divers. It is unknown why emission of methyl alkanes (which could originate from the phosphatidylcholine membrane in the alveoli) are reduced after HBOT. This suggests that HBOT might not be as damaging to the pulmonary tract as previously assumed. Future research on POT should focus on the identified VOCs (inflammation and methyl alkanes)"
Keywords:exhaled breath analysis gas chromatography-mass spectrometry hyperbaric oxygen therapy pulmonary oxygen toxicity volatile organic compounds;
Notes:"PubMed-not-MEDLINEWingelaar, T T Brinkman, P van Ooij, P J A M Hoencamp, R Maitland-van der Zee, A H Hollmann, M W van Hulst, R A eng Switzerland 2019/05/10 Front Physiol. 2019 Apr 24; 10:475. doi: 10.3389/fphys.2019.00475. eCollection 2019"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025