Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana"    Next AbstractBiological responses of Habrobracon to spaceflight »

Proc Natl Acad Sci U S A


Title:Floral humidity as a reliable sensory cue for profitability assessment by nectar-foraging hawkmoths
Author(s):von Arx M; Goyret J; Davidowitz G; Raguso RA;
Address:"Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA. martin.vonarx@gmail.com"
Journal Title:Proc Natl Acad Sci U S A
Year:2012
Volume:20120529
Issue:24
Page Number:9471 - 9476
DOI: 10.1073/pnas.1121624109
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"Most research on plant-pollinator communication has focused on sensory and behavioral responses to relatively static cues. Floral rewards such as nectar, however, are dynamic, and foraging animals will increase their energetic profit if they can make use of floral cues that more accurately indicate nectar availability. Here we document such a cue--transient humidity gradients--using the night blooming flowers of Oenothera cespitosa (Onagraceae). The headspace of newly opened flowers reaches levels of about 4% above ambient relative humidity due to additive evapotranspirational water loss through petals and water-saturated air from the nectar tube. Floral humidity plumes differ from ambient levels only during the first 30 min after anthesis (before nectar is depleted in wild populations), whereas other floral traits (scent, shape, and color) persist for 12-24 h. Manipulative experiments indicated that floral humidity gradients are mechanistically linked to nectar volume and therefore contain information about energy rewards to floral visitors. Behavioral assays with Hyles lineata (Sphingidae) and artificial flowers with appropriate humidity gradients suggest that these hawkmoth pollinators distinguish between subtle differences in relative humidity when other floral cues are held constant. Moths consistently approached and probed flowers with elevated humidity over those with ambient humidity levels. Because floral humidity gradients are largely produced by the evaporation of nectar itself, they represent condition-informative cues that facilitate remote sensing of floral profitability by discriminating foragers. In a xeric environment, this level of honest communication should be adaptive when plant reproductive success is pollinator limited, due to intense competition for the attention of a specialized pollinator"
Keywords:Animals *Feeding Behavior *Flowers *Humidity;
Notes:"Medlinevon Arx, Martin Goyret, Joaquin Davidowitz, Goggy Raguso, Robert A eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2012/05/31 Proc Natl Acad Sci U S A. 2012 Jun 12; 109(24):9471-6. doi: 10.1073/pnas.1121624109. Epub 2012 May 29"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024