|
Microbiome
Title: | Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans |
|
Author(s): | Teng ZJ; Qin QL; Zhang W; Li J; Fu HH; Wang P; Lan M; Luo G; He J; McMinn A; Wang M; Chen XL; Zhang YZ; Chen Y; Li CY; |
|
Address: | "State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China. College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China. Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China. The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia. College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China. Y.Chen.25@warwick.ac.uk. School of Life Sciences, University of Warwick, Coventry, UK. Y.Chen.25@warwick.ac.uk. College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China. lcy@ouc.edu.cn. Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China. lcy@ouc.edu.cn" |
|
Journal Title: | Microbiome |
Year: | 2021 |
Volume: | 20211016 |
Issue: | 1 |
Page Number: | 207 - |
DOI: | 10.1186/s40168-021-01153-3 |
|
ISSN/ISBN: | 2049-2618 (Electronic) 2049-2618 (Linking) |
|
Abstract: | "BACKGROUND: Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth's surface, contribute significantly to the global oceanic DMS sea-air flux. However, a global overview of DMS and DMSP cycling in polar oceans is still lacking and the key genes and the microbial assemblages involved in DMSP/DMS transformation remain to be fully unveiled. RESULTS: Here, we systematically investigated the biogeographic traits of 16 key microbial enzymes involved in DMS/DMSP cycling in 60 metagenomic samples from polar waters, together with 174 metagenome and 151 metatranscriptomes from non-polar Tara Ocean dataset. Our analyses suggest that intense DMS/DMSP cycling occurs in the polar oceans. DMSP demethylase (DmdA), DMSP lyases (DddD, DddP, and DddK), and trimethylamine monooxygenase (Tmm, which oxidizes DMS to dimethylsulfoxide) were the most prevalent bacterial genes involved in global DMS/DMSP cycling. Alphaproteobacteria (Pelagibacterales) and Gammaproteobacteria appear to play prominent roles in DMS/DMSP cycling in polar oceans. The phenomenon that multiple DMS/DMSP cycling genes co-occurred in the same bacterial genome was also observed in metagenome assembled genomes (MAGs) from polar oceans. The microbial assemblages from the polar oceans were significantly correlated with water depth rather than geographic distance, suggesting the differences of habitats between surface and deep waters rather than dispersal limitation are the key factors shaping microbial assemblages involved in DMS/DMSP cycling in polar oceans. CONCLUSIONS: Overall, this study provides a global overview of the biogeographic traits of known bacterial genes involved in DMS/DMSP cycling from the Arctic and Antarctic oceans, laying a solid foundation for further studies of DMS/DMSP cycling in polar ocean microbiome at the enzymatic, metabolic, and processual levels. Video Abstract" |
|
Keywords: | Oceans and Seas Phylogeny *Seawater Sulfides Sulfonium Compounds DMS/DMSP cycling Geographic distribution Phylogenetic diversity Polar oceans; |
|
Notes: | "MedlineTeng, Zhao-Jie Qin, Qi-Long Zhang, Weipeng Li, Jian Fu, Hui-Hui Wang, Peng Lan, Musheng Luo, Guangfu He, Jianfeng McMinn, Andrew Wang, Min Chen, Xiu-Lan Zhang, Yu-Zhong Chen, Yin Li, Chun-Yang eng Research Support, Non-U.S. Gov't Video-Audio Media England 2021/10/17 Microbiome. 2021 Oct 16; 9(1):207. doi: 10.1186/s40168-021-01153-3" |
|
|
|
|
|
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024
|