Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAggregating exposures & cumulating risk for semivolatile organic compounds: A review    Next AbstractChemical-by-chemical and cumulative risk assessment of residential indoor exposure to semivolatile organic compounds in France »

Environ Int


Title:Dermal absorption of semivolatile organic compounds from the gas phase: Sensitivity of exposure assessment by steady state modeling to key parameters
Author(s):Pelletier M; Bonvallot N; Ramalho O; Blanchard O; Mercier F; Mandin C; Le Bot B; Glorennec P;
Address:"EHESP-School of Public Health, Sorbonne Paris Cite, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France. University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaures, Champs sur Marne, 77447 Marne la Vallee Cedex 2, France. EHESP-School of Public Health, Sorbonne Paris Cite, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France. INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France; University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaures, Champs sur Marne, 77447 Marne la Vallee Cedex 2, France; LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes, France. EHESP-School of Public Health, Sorbonne Paris Cite, Rennes, France; INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes, France. Electronic address: philippe.glorennec@ehesp.fr"
Journal Title:Environ Int
Year:2017
Volume:20170227
Issue:
Page Number:106 - 113
DOI: 10.1016/j.envint.2017.02.005
ISSN/ISBN:1873-6750 (Electronic) 0160-4120 (Linking)
Abstract:"Recent research has demonstrated the importance of dermal exposure for some semivolatile organic compounds (SVOCs) present in the gas phase of indoor air. Though models for estimating dermal intake from gaseous SVOCs exist, their predictions can be subject to variations in input parameters, which can lead to large variation in exposure estimations. In this sensitivity analysis for a steady state model, we aimed to assess these variations and their determinants using probabilistic Monte Carlo sampling for 8 SVOCs from different chemical families: phthalates, bisphenols, polycyclic aromatic hydrocarbons (PAHs), organophosphorus (OPs), organochlorines (OCs), synthetic musks, polychlorinated biphenyls (PCBs) and polybromodiphenylethers (PBDEs). Indoor SVOC concentrations were found to be the most influential parameters. Both Henry's law constant (H) and octanol/water partition coefficient (K(ow)) uncertainty also had significant influence. While exposure media properties such as volume fraction of organic matter in the particle phase (f(om-part)), particle density (rho(part)), concentration ([TSP]) and transport coefficient (?╖(d)) had a slight influence for some compounds, human parameters such as body weight (W), body surface area (A) and daily exposure (t) make a marginal or null contribution to the variance of dermal intake for a given age group. Inclusion of a parameter sensitivity analysis appears essential to reporting uncertainties in dermal exposure assessment"
Keywords:"Air Pollutants/*metabolism Air Pollution, Indoor/*analysis Gases/*metabolism Humans Models, Theoretical Monte Carlo Method *Skin Absorption Volatile Organic Compounds/*metabolism *Chemical *Contact *Indoor air *Monte Carlo *Percutaneous *Sensitivity analy;"
Notes:"MedlinePelletier, Maud Bonvallot, Nathalie Ramalho, Olivier Blanchard, Olivier Mercier, Fabien Mandin, Corinne Le Bot, Barbara Glorennec, Philippe eng Netherlands 2017/03/03 Environ Int. 2017 May; 102:106-113. doi: 10.1016/j.envint.2017.02.005. Epub 2017 Feb 27"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-12-2024