Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMating attraction by Stenotus rubrovittatus (Heteroptera: Miridae) females and its relationship to ovarian development    Next Abstract"Laboratory evaluation of the life history of hibiscus mealybug, Nipaecocus viridis (Hemiptera: Pseudococcidae), on selected citrus and potential non-citrus hosts in Florida" »

Molecules


Title:"Isavuconazole: Thermodynamic Evaluation of Processes Sublimation, Dissolution and Partition in Pharmaceutically Relevant Media"
Author(s):Ol'khovich M; Sharapova A; Blokhina S; Perlovich G;
Address:"G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Street, 153045 Ivanovo, Russia"
Journal Title:Molecules
Year:2021
Volume:20210806
Issue:16
Page Number: -
DOI: 10.3390/molecules26164759
ISSN/ISBN:1420-3049 (Electronic) 1420-3049 (Linking)
Abstract:"A temperature dependence of saturated vapor pressure of isavuconazole (IVZ), an antimycotic drug, was found by using the method of inert gas-carrier transfer and the thermodynamic functions of sublimation were calculated at a temperature of 298.15 K. The value of the compound standard molar enthalpy of sublimation was found to be 138.1 +/- 0.5 kJ.mol(-1). The IVZ thermophysical properties-melting point and enthalpy-equaled 302.7 K and 29.9 kJ mol(-1), respectively. The isothermal saturation method was used to determine the drug solubility in seven pharmaceutically relevant solvents within the temperature range from 293.15 to 313.15 K. The IVZ solubility in the studied solvents increased in the following order: buffer pH 7.4, buffer pH 2.0, buffer pH 1.2, hexane, 1-octanol, 1-propanol, ethanol. Depending on the solvent chemical nature, the compound solubility varied from 6.7 x 10(-6) to 0.3 mol.L(-1). The Hansen s approach was used for evaluating and analyzing the solubility data of drug. The results show that this model well-described intermolecular interactions in the solutions studied. It was established that in comparison with the van't Hoff model, the modified Apelblat one ensured the best correlation with the experimental solubility data of the studied drug. The activity coefficients at infinite dilution and dissolution excess thermodynamic functions of IVZ were calculated in each of the solvents. Temperature dependences of the compound partition coefficients were obtained in a binary 1-octanol/buffer pH 7.4 system and the transfer thermodynamic functions were calculated. The drug distribution from the aqueous solution to the organic medium was found to be spontaneous and entropy-driven"
Keywords:"1-Octanol/chemistry Calorimetry, Differential Scanning Crystallization Nitriles/*chemistry Pyridines/*chemistry Solubility Solvents/chemistry *Temperature Triazoles/*chemistry Volatilization Water/chemistry Hansen solubility parameter isavuconazole partit;"
Notes:"MedlineOl'khovich, Marina Sharapova, Angelica Blokhina, Svetlana Perlovich, German eng 19-13-00017/Russian Scientific Foundation/ Switzerland 2021/08/28 Molecules. 2021 Aug 6; 26(16):4759. doi: 10.3390/molecules26164759"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025