Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling    Next AbstractGenomic analysis of the interactions between social environment and social communication systems in honey bees (Apis mellifera) »

FEBS J


Title:The gene road to royalty--differential expression of hydroxylating genes in the mandibular glands of the honeybee
Author(s):Malka O; Karunker I; Yeheskel A; Morin S; Hefetz A;
Address:"Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel"
Journal Title:FEBS J
Year:2009
Volume:20090821
Issue:19
Page Number:5481 - 5490
DOI: 10.1111/j.1742-4658.2009.07232.x
ISSN/ISBN:1742-4658 (Electronic) 1742-464X (Linking)
Abstract:"The advances in honeybee sociogenomics have paved the way for the study of social communication processes at the gene level, in particular the expression of caste-specific pheromones. The queen honeybee mandibular pheromone provides an excellent model system, in that biosynthesis of the hydroxylating fatty acid caste-specific pheromone appears to be reduced to a single chemical hydroxylation step of stearic acid. Queens are typified by omega-1-hydroxylation, as opposed to the worker-typical omega-hydroxylation. We hypothesized that this bifurcation is the consequence of differential expression of caste-specific genes that code for fatty acid-hydroxylating enzymes from the cytochrome P450 (CYP) family. Bioinformatics studies disclosed two candidate proteins CYP4AA1 and CYP18A1. We thus investigated the expression of these genes in the mandibular glands of queens, and of queenright (QR) and queenless (QL) workers. The real-time PCR results revealed that CYP4AA1 (omega-hydroxylation) was expressed at high levels in both QR and QL workers, whereas in queens its expression was negligible. The expression of CYP18A1 (omega-1-hydroxylation), on the other hand, was high in the queen's glands and negligible in those of QR workers. In QL workers, however, the expression of CYP18A1 was considerably elevated and significantly greater than in QR workers. Three-dimensional structural models constructed for these enzymes demonstrate differences in the active site between CYP18A1 and CYP4AA1, in line with their differential catalytic specificity. The fact that queen pheromone plasticity can be tracked all the way to gene expression provides a new insight into the process of caste differentiation and the accompanying social communication"
Keywords:"Amino Acid Sequence Animal Structures/enzymology Animals Bees/*enzymology/*genetics/physiology Catalytic Domain/genetics Cytochrome P-450 Enzyme System/chemistry/*genetics/metabolism Female Gene Expression Regulation, Enzymologic Genes, Insect Insect Horm;"
Notes:"MedlineMalka, Osnat Karunker, Iris Yeheskel, Adva Morin, Shai Hefetz, Abraham eng Research Support, Non-U.S. Gov't England 2009/08/26 FEBS J. 2009 Oct; 276(19):5481-90. doi: 10.1111/j.1742-4658.2009.07232.x. Epub 2009 Aug 21"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 30-12-2024