Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractInoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes    Next AbstractHydrogeochemical and isotopic evaluation of VOC commingled plumes in a weathered fractured bedrock aquifer treated with thermal and bioremediation »

Mol Ecol


Title:Finding genes and lineages under selection in speciation
Author(s):Hart MW; Guerra V;
Address:"Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada"
Journal Title:Mol Ecol
Year:2017
Volume:26
Issue:14
Page Number:3587 - 3590
DOI: 10.1111/mec.14170
ISSN/ISBN:1365-294X (Electronic) 0962-1083 (Linking)
Abstract:"What are the genes and traits that respond to selection and cause prezygotic reproductive isolation between species? This question has been hard to answer because genomes are large, the targets of selection may be scattered across the genome (Sabeti et al., ) and different genes may respond to the same selective pressure in different populations (Scheinfeldt et al., ). In this issue of Molecular Ecology, Weber et al. () use a clever comparative approach and leading-edge transcriptomic methods to identify the species and genes under positive selection for divergence between brittle stars (the echinoderm class Ophiuroidea) in the Ophioderma longicauda species complex. They found convincing evidence of positive or diversifying selection acting on two genes encoding ion channels that form part of the signal transduction cascade within the sperm in response to pheromones. Evidence for selection was concentrated in genes from one species (called C5, with internal fertilization and female parental care of brooded juveniles and not in the other species (called C3, with more conventional broadcast spawning and planktonic development of embryos and larvae). That analysis greatly extends the range of taxa, life history traits and molecules that are associated with positive selection in speciation. It also illustrates some of the current limitations on the application of RNAseq methods in the search for the targets of selection in nonmodel organisms like brittle stars. From both points of view, the new work by Weber et al. () has important implications for our understanding of speciation in the ocean"
Keywords:Animals Echinodermata Female Ion Channels *Life History Traits Male Reproductive Isolation Spermatozoa RNAseq fertilization positive selection speciation;
Notes:"MedlineHart, Michael W Guerra, Vanessa eng Comment England 2017/07/05 Mol Ecol. 2017 Jul; 26(14):3587-3590. doi: 10.1111/mec.14170"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024