Title: | Membrane inlet mass spectrometry for homeland security and forensic applications |
Author(s): | Giannoukos S; Brkic B; Taylor S; France N; |
Address: | "Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK" |
DOI: | 10.1007/s13361-014-1032-7 |
ISSN/ISBN: | 1879-1123 (Electronic) 1044-0305 (Linking) |
Abstract: | "A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times" |
Notes: | "PubMed-not-MEDLINEGiannoukos, Stamatios Brkic, Boris Taylor, Stephen France, Neil eng 2014/11/16 J Am Soc Mass Spectrom. 2015 Feb; 26(2):231-9. doi: 10.1007/s13361-014-1032-7. Epub 2014 Nov 15" |