Title: | Distinct interactions select and maintain a specific cell fate |
Author(s): | Doncic A; Falleur-Fettig M; Skotheim JM; |
Address: | "Department of Biology, Stanford University, Stanford, CA 94305, USA" |
DOI: | 10.1016/j.molcel.2011.06.025 |
ISSN/ISBN: | 1097-4164 (Electronic) 1097-2765 (Print) 1097-2765 (Linking) |
Abstract: | "The ability to specify and maintain discrete cell fates is essential for development. However, the dynamics underlying selection and stability of distinct cell types remain poorly understood. Here, we provide a quantitative single-cell analysis of commitment dynamics during the mating-mitosis switch in budding yeast. Commitment to division corresponds precisely to activating the G1 cyclin positive feedback loop in competition with the cyclin inhibitor Far1. Cyclin-dependent phosphorylation and inhibition of the mating pathway scaffold Ste5 are required to ensure exclusive expression of the mitotic transcriptional program after cell cycle commitment. Failure to commit exclusively results in coexpression of both cell cycle and pheromone-induced genes, and a morphologically mixed inviable cell fate. Thus, specification and maintenance of a cellular state are performed by distinct interactions, which are likely a consequence of disparate reaction rates and may be a general feature of the interlinked regulatory networks responsible for selecting cell fates" |
Keywords: | "Adaptor Proteins, Signal Transducing/genetics/metabolism/physiology Cell Cycle/genetics/physiology Feedback, Physiological Fungal Proteins/analysis/genetics/*metabolism G1 Phase/genetics/*physiology Models, Biological Phosphorylation Repressor Proteins/an;" |
Notes: | "MedlineDoncic, Andreas Falleur-Fettig, Melody Skotheim, Jan M eng R01 GM092925/GM/NIGMS NIH HHS/ R01 GM092925-01A1/GM/NIGMS NIH HHS/ R01 GM092925-02/GM/NIGMS NIH HHS/ GM092925/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2011/08/23 Mol Cell. 2011 Aug 19; 43(4):528-39. doi: 10.1016/j.molcel.2011.06.025" |