Title: | Identifying energy constraints to parasite resistance |
Address: | "Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. desiree.allen@ed.ac.uk" |
DOI: | 10.1111/j.1420-9101.2010.02152.x |
ISSN/ISBN: | 1420-9101 (Electronic) 1010-061X (Linking) |
Abstract: | "Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly" |
Keywords: | "Age Factors Animals Body Size Daphnia/anatomy & histology/drug effects/*parasitology/physiology *Energy Metabolism Fertility Genotype *Host-Parasite Interactions Immunity, Innate Pasteuria/*physiology Pheromones/pharmacology Smegmamorpha/metabolism;" |
Notes: | "MedlineAllen, D E Little, T J eng Wellcome Trust/United Kingdom Research Support, Non-U.S. Gov't Switzerland 2011/01/07 J Evol Biol. 2011 Jan; 24(1):224-9. doi: 10.1111/j.1420-9101.2010.02152.x" |