Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTemporary vs. Permanent Sub-slab Ports: A Comparative Performance Study    Next Abstract"Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part I: Dihydronepetalactones" »

Mol Biol Cell


Title:The Sda1 protein is required for passage through start
Author(s):Zimmerman ZA; Kellogg DR;
Address:"Sinsheimer Labs, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064, USA"
Journal Title:Mol Biol Cell
Year:2001
Volume:12
Issue:1
Page Number:201 - 219
DOI: 10.1091/mbc.12.1.201
ISSN/ISBN:1059-1524 (Print) 1059-1524 (Linking)
Abstract:"We have used affinity chromatography to identify proteins that interact with Nap1, a protein previously shown to play a role in mitosis. Our studies demonstrate that a highly conserved protein called Sda1 binds to Nap1 both in vitro and in vivo. Loss of Sda1 function causes cells to arrest uniformly as unbudded cells that do not increase significantly in size. Cells arrested by loss of Sda1 function have a 1N DNA content, fail to produce the G1 cyclin Cln2, and remain responsive to mating pheromone, indicating that they arrest in G1 before Start. Expression of CLN2 from a heterologous promoter in temperature-sensitive sda1 cells induces bud emergence and polarization of the actin cytoskeleton, but does not induce cell division, indicating that the sda1 cell cycle arrest phenotype is not due simply to a failure to produce the G1 cyclins. The Sda1 protein is absent from cells arrested in G0 and is expressed before Start when cells reenter the cell cycle, further suggesting that Sda1 functions before Start. Taken together, these findings reveal that Sda1 plays a critical role in G1 events. In addition, these findings suggest that Nap1 is likely to function during G1. Consistent with this, we have found that Nap1 is required for viability in cells lacking the redundant G1 cyclins Cln1 and Cln2. In contrast to a previous study, we have found no evidence that Sda1 is required for the assembly or function of the actin cytoskeleton. Further characterization of Sda1 is likely to provide important clues to the poorly understood mechanisms that control passage through G1"
Keywords:"Cell Cycle/*drug effects Cell Cycle Proteins/genetics/metabolism/*pharmacology Chromatography, Affinity Cyclin G Cyclins/drug effects/metabolism G1 Phase/drug effects Mutation *Nuclear Proteins Nucleosome Assembly Protein 1 Protein Binding Proteins/metabo;"
Notes:"MedlineZimmerman, Z A Kellogg, D R eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. 2001/02/13 Mol Biol Cell. 2001 Jan; 12(1):201-19. doi: 10.1091/mbc.12.1.201"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024