Title: | Secreting and sensing the same molecule allows cells to achieve versatile social behaviors |
Address: | "Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA" |
ISSN/ISBN: | 1095-9203 (Electronic) 0036-8075 (Print) 0036-8075 (Linking) |
Abstract: | "Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core 'secrete-and-sense' circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self-communication and neighbor communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself and social through quorum sensing, and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species" |
Keywords: | "Feedback, Physiological *Models, Biological Pheromones/*metabolism Protein Transport *Quorum Sensing Receptors, Mating Factor/*metabolism Saccharomyces cerevisiae/cytology/*metabolism Saccharomyces cerevisiae Proteins/*metabolism *Social Behavior;" |
Notes: | "MedlineYouk, Hyun Lim, Wendell A eng R01 GM62583/GM/NIGMS NIH HHS/ P50 GM081879/GM/NIGMS NIH HHS/ R01 GM062583/GM/NIGMS NIH HHS/ R01 GM055040/GM/NIGMS NIH HHS/ PN2 EY016546/EY/NEI NIH HHS/ HHMI/Howard Hughes Medical Institute/ R01 GM55040/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2014/02/08 Science. 2014 Feb 7; 343(6171):1242782. doi: 10.1126/science.1242782" |