Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Leaf miner-induced morphological, physiological and molecular changes in mangrove plant Avicennia marina (Forsk.) Vierh"    Next AbstractBacterial Lipopolysaccharide Induced Alterations of Genome-Wide DNA Methylation and Promoter Methylation of Lactation-Related Genes in Bovine Mammary Epithelial Cells »

BMC Vet Res


Title:Bacterial endotoxin decreased histone H3 acetylation of bovine mammary epithelial cells and the adverse effect was suppressed by sodium butyrate
Author(s):Chen J; Wu Y; Sun Y; Dong X; Wang Z; Zhang Z; Xiao Y; Dong G;
Address:"College of Animal Science and Technology, Southwest University, Beibei, 400716, China. Institute for Herbivorous Livestock Research, Chongqing Academy of Animal Science, Chongqing, 402460, China. College of International Studies, Southwest University, Beibei, 400716, China. College of Animal Science and Technology, Southwest University, Beibei, 400716, China. gzdong@swu.edu.cn"
Journal Title:BMC Vet Res
Year:2019
Volume:20190729
Issue:1
Page Number:267 -
DOI: 10.1186/s12917-019-2007-5
ISSN/ISBN:1746-6148 (Electronic) 1746-6148 (Linking)
Abstract:"BACKGROUND: In practical production, dairy cows are frequently exposed to bacterial endotoxin (lipopolysaccharide, LPS) when they are subjected to high-concentrate diets, poor hygienic environments, as well as mastitis and metritis. Histone acetylation is an important epigenetic control of DNA transcription and a higher histone acetylation is associated with facilitated transcription. LPS might reduce histone acetylation in the mammary epithelial cells, resulting in lower transcription and mRNA expression of lactation-related genes. This study was conducted to investigate the effect of LPS on histone acetylation in bovine mammary epithelial cells and the efficacy of sodium butyrate (SB) in suppressing the endotoxin-induced adverse effect. Firstly, the bovine mammary epithelial cell line MAC-T cells were treated for 48 h with LPS at different doses of 0, 1, 10, 100, and 1000 endotoxin units (EU)/mL (1 EU = 0.1 ng), and the acetylation levels of histones H3 and H4 as well as the histone deacetylase (HDAC) activity were measured. Secondly, the MAC-T cells were treated for 48 h as follows: control, LPS (100 EU/mL), and LPS (100 EU/mL) plus SB (10 mmol/L), and the acetylation levels of histones H3 and H4 as well as milk gene mRNA expressions were determined. RESULTS: The results showed that HDAC activity increased linearly with increasing LPS doses (P < 0.01). The histone H3 acetylation levels were significantly reduced by LPS, while the histone H4 acetylation levels were not affected by LPS (P > 0.05). Sodium butyrate, an inhibitor of HDAC, effectively suppressed the endotoxin-induced decline of histone H3 acetylation (P < 0.05). As a result, SB significantly enhanced the mRNA expression of lactation-related genes (P < 0.05). CONCLUSIONS: The results suggest one of the adverse effects of LPS on the lactation of bovine mammary gland epithelial cells was due to decreasing histone H3 acetylation through increasing HDAC activity, whereas the endotoxin-induced adverse effects were effectively suppressed by SB"
Keywords:"Acetylation/drug effects Animals Butyric Acid/*pharmacology Cattle Endotoxins/*toxicity Epithelial Cells/*drug effects Female Histamine Antagonists/pharmacology Histones/*metabolism Mammary Glands, Animal/cytology/*drug effects Bovine Endotoxin Epithelial;"
Notes:"MedlineChen, Jingbo Wu, Yongjiang Sun, Yawang Dong, Xianwen Wang, Zili Zhang, Zhu Xiao, Yanli Dong, Guozhong eng 31672448/National Natural Science Foundation of China/ XDJK2018D008/Fundamental Research Funds for the Central Universities/ England 2019/07/31 BMC Vet Res. 2019 Jul 29; 15(1):267. doi: 10.1186/s12917-019-2007-5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024