Title: | Research advances in chlorinated benzene-containing compound oxidation catalyzed by metal oxides: activity-enhanced strategies and reaction-facilitated mechanisms |
Author(s): | Luo N; Gao F; Chen D; Duan E; Sani Z; Yi H; Tang X; |
Address: | "Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China. txiaolong@126.com. School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China. Department of Science Laboratory Technology, Federal Polytechnic Daura, Katsina State, Nigeria" |
ISSN/ISBN: | 2040-3372 (Electronic) 2040-3364 (Linking) |
Abstract: | "Chlorinated benzene-containing compounds (CBCs) refer to volatile organic compounds which simultaneously contain benzene rings and Cl atoms. It has been widely believed to cause serious harm to human health and the natural environment due to high toxicity, high persistence, and refractory degradation, thus, it is urgent to develop CBC abatement technology. In this review, several CBCs control techniques are compared, and the catalytic oxidation technology stands out for its good low-temperature activity and chlorine resistance of metal oxide catalysts. Then, the common and individual reaction pathways and water impact mechanisms of CBC catalytic oxidation on transition metal catalysts are concluded. Subsequently, three typical metal oxides (namely, VO(x), MnO(x), and CeO(2)-based catalysts) are introduced in the catalytic degradation of CBCs, whose catalytic activity influence factors are also proposed on active components, support properties, surface acidity, and nanostructure (crystal, morphology, etc.). Furthermore, the effective strategies to enhance the REDOX cycle and surface acidic sites are summarized by the doping of metals, the modification of support or/and acidic groups, and the construction of nanostructures. Finally, the key points for efficient catalyst design are speculated. This review may provide ideas for the breakthroughs of activity-enhanced strategies, the design of efficient catalysts, and research on reaction-promoted mechanisms" |
Notes: | "PubMed-not-MEDLINELuo, Ning Gao, Fengyu Chen, Du Duan, Erhong Sani, Zaharaddeen Yi, Honghong Tang, Xiaolong eng Review England 2023/07/11 Nanoscale. 2023 Jul 27; 15(29):12157-12174. doi: 10.1039/d2nr07283a" |