Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Bioactivity, proximate, mineral and volatile profiles along the flowering stages of Opuntia microdasys (Lehm.): defining potential applications"    Next AbstractInterneuron control of C. elegans developmental decision-making »

Curr Biol


Title:Brain-wide bidirectional neuropeptide modulation of individual neuron classes regulates a developmental decision
Author(s):Chai CM; Park H; Sternberg PW;
Address:"Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA. Electronic address: cchai@caltech.edu. Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA. Division of Biology & Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA. Electronic address: pws@caltech.edu"
Journal Title:Curr Biol
Year:2022
Volume:20220608
Issue:15
Page Number:3365 - 3373
DOI: 10.1016/j.cub.2022.05.048
ISSN/ISBN:1879-0445 (Electronic) 0960-9822 (Linking)
Abstract:"Secreted neuromodulators, like biogenic amines and neuropeptides, can reconfigure circuit functions both locally and at a distance and establish global brain states that alter circuit outputs over prolonged timescales.(1-3) Despite their diversity and ubiquitous presence, many studies on neuromodulation tend to focus on dissecting the function and site of action of individual neuropeptides. Here, we take a different approach by conducting a systems-level investigation of neuropeptide receptor signaling function and cell-type-specific distribution in the context of the Caenorhabditis elegans diapause entry developmental decision. C. elegans diapause entry is controlled by sensory perception of external factors and is regulated by neuropeptide signaling.(4-8) We performed a comprehensive functional screen of neuropeptide receptor mutants for pheromone-induced diapause entry phenotypes and integrated these results with published C. elegans single-cell RNA-seq data to reveal that almost all neuron classes expressed at least one receptor with a role in diapause entry.(9) Our receptor expression analysis also identified four highly modulated neural hubs with no previously reported roles in diapause entry that are distributed throughout the animal's body, possibly as a means of synchronizing the whole-organism transition into the appropriate larval morph. Furthermore, most neuron classes expressed unique neuropeptide receptor repertoires that have opposing effects on the diapause entry decision. We propose that brain-wide antagonistic neuropeptide modulation of individual neuron classes by distinct neuropeptide receptor subsets could serve as a strategy against overmodulation and that this motif might generalize to other decision-making paradigms in other organisms"
Keywords:"Animals Brain/metabolism Caenorhabditis elegans/physiology *Caenorhabditis elegans Proteins/metabolism Neurons/metabolism *Neuropeptides/metabolism Receptors, Neuropeptide/metabolism G protein-coupled receptor decision-making developmental plasticity diap;"
Notes:"MedlineChai, Cynthia M Park, Heenam Sternberg, Paul W eng P40 OD010440/OD/NIH HHS/ R24 OD023041/OD/NIH HHS/ UF1 NS111697/NS/NINDS NIH HHS/ Research Support, N.I.H., Extramural England 2022/06/10 Curr Biol. 2022 Aug 8; 32(15):3365-3373.e6. doi: 10.1016/j.cub.2022.05.048. Epub 2022 Jun 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 18-06-2024