Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractQuorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria    Next AbstractA two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter »

Peptides


Title:Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior
Author(s):Kleerebezem M; Quadri LE;
Address:"Wageningen Centre for Food Sciences, The Netherlands. kleerebe@nizo.nl"
Journal Title:Peptides
Year:2001
Volume:22
Issue:10
Page Number:1579 - 1596
DOI: 10.1016/s0196-9781(01)00493-4
ISSN/ISBN:0196-9781 (Print) 0196-9781 (Linking)
Abstract:"Quorum sensing enables unicellular organisms to behave in a multicellular way by allowing population-wide synchronized adaptive responses that involve modulation of a wide range of physiological responses in a cell density-, cell proximity- or growth phase-dependent manner. Examples of processes modulated by quorum sensing are the development of genetic competence, conjugative plasmid transfer, sporulation and cell differentiation, biofilm formation, virulence response, production of antibiotics, antimicrobial peptides and toxins, and bioluminescence (for reviews see [38]). The cell-to-cell communication strategies involved in these processes are based on the utilization of small signal molecules produced and released into the environment by the microorganisms. These communication molecules are referred to as pheromones and act as chemical messengers that transmit information across space. The extracellular pheromones accumulate in the environment and trigger a response in the target cells when its concentration reaches a certain threshold value. Elucidation of the chemical nature of the pheromones modulating the processes mentioned above reveals that most of them are unmodified peptides, post-translationally modified peptides, N-acyl homoserine lactones, or butyrolactones. Lactone-based pheromones are the preferred communication signals in Gram-negative bacteria (for review see [47,48]), whereas peptide-based pheromones are the predominant extracellular signals among Gram-positive bacteria (for review see [37,61]). However, lactone-based pheromones are utilized as signals that modulate differentiation and secondary metabolism production in Streptomyces (for review see [20]). This review focuses on the major advances and current views of the peptide-pheromone dependent regulatory circuits involved in production of antimicrobial peptides in Gram-positive bacteria"
Keywords:"Anti-Bacterial Agents/*biosynthesis *Bacterial Proteins Bacteriocins Cell Communication/physiology Gram-Positive Bacteria/*metabolism Models, Biological Nisin/biosynthesis Peptides/*metabolism Pheromones/metabolism Signal Transduction/physiology;"
Notes:"MedlineKleerebezem, M Quadri, L E eng Research Support, Non-U.S. Gov't Review 2001/10/06 Peptides. 2001 Oct; 22(10):1579-96. doi: 10.1016/s0196-9781(01)00493-4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024