Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria    Next AbstractMass spectrometry-based electronic nose to authenticate 100% Italian durum wheat pasta and characterization of volatile compounds »

Forensic Sci Int


Title:"An assessment of detection canine alerts using flowers that release methyl benzoate, the cocaine odorant, and an evaluation of their behavior in terms of the VOCs produced"
Author(s):Cerreta MM; Furton KG;
Address:"International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA. International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA. Electronic address: furtonk@fiu.edu"
Journal Title:Forensic Sci Int
Year:2015
Volume:20150330
Issue:
Page Number:107 - 114
DOI: 10.1016/j.forsciint.2015.03.021
ISSN/ISBN:1872-6283 (Electronic) 0379-0738 (Linking)
Abstract:"In recent years, the high frequency of illicit substance abuse reported in the United States has made the development of efficient and rapid detection methods important. Biological detectors, such as canines (Canis familiaris), are valuable tools for rapid, on-site identification of illicit substances. However, research indicates that in many cases canines do not alert to the contraband, but rather to the volatile organic compounds (VOCs) that are released from the contraband, referred to as the 'active odor.' In 2013, canine accuracy and reliability were challenged in the Supreme Court case, State of Florida v. Jardines. In this case, it was stated that if a canine alerts to the active odor, and not the contraband, the canine's accuracy and selectivity could be questioned, since many of these compounds have been found in common household products. Specifically, methyl benzoate, the active odor of cocaine, has been found to be the most abundant compound produced by snapdragon flowers. Therefore, the purpose of this study is to evaluate the odor profiles of various species of snapdragon flowers to assess how significantly methyl benzoate contributes to the total VOC profile or fragrance that is produced. Particularly, this study examines the VOCs released from newly grown snapdragon flowers and determines its potential at eliciting a false alert from specially trained detection canines. The ability of detection canines to differentiate between cocaine and snapdragon flowers was determined in order to validate the field accuracy and discrimination power of these detectors. An optimized method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to test the different types and abundances of compounds generated from snapdragon flowers at various stages throughout the plants' life cycle. The results indicate that although methyl benzoate is present in the odor profile of snapdragon flowers, other compounds are present that contribute significantly, if not more, than that of methyl benzoate. Canine teams, from various police departments throughout South Florida, certified for narcotics detection, took part in this study. Two canine trials involving 21 canines teams were performed by exposing the teams to 4 different species of snapdragon flowers. Of the 21 canine teams tested, none alerted to the snapdragon flowers presented, while all (100%) alerted to real cocaine samples, the positive control. Notably, the results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine's odor profile from that of snapdragon flowers"
Keywords:"Animals Antirrhinum/*chemistry Behavior, Animal/physiology Benzoates/*analysis Cocaine/chemistry Dogs/*physiology Flowers/*chemistry Forensic Sciences Gas Chromatography-Mass Spectrometry Narcotics/chemistry Odorants Smell/*physiology Solid Phase Microext;"
Notes:"MedlineCerreta, Michelle M Furton, Kenneth G eng Legal Case Ireland 2015/04/22 Forensic Sci Int. 2015 Jun; 251:107-14. doi: 10.1016/j.forsciint.2015.03.021. Epub 2015 Mar 30"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024