Title: | Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds |
Author(s): | Kim SC; Nahm SW; Park YK; |
Address: | "Department of Environmental Education, Mokpo National University, 1666 Youngsan Ro, Cheonggye Myeon, Muan 534-729, Republic of Korea. Electronic address: gikim@mokpo.ac.kr. Department of Environmental Education, Mokpo National University, 1666 Youngsan Ro, Cheonggye Myeon, Muan 534-729, Republic of Korea. School of Environmental Engineering, University of Seoul, 163 Siripdae Ro, Dongdaemun Gu, Seoul 130-743, Republic of Korea" |
DOI: | 10.1016/j.jhazmat.2015.06.059 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Red mud (RM) was assessed as a catalyst for the complete oxidation of volatile organic compounds (VOCs). The catalytic activity of RM was influenced by an acid treatment and the calcination temperature. Acid-treated RM (HRM) catalysts with a platinum loading (Pt/HRM) were prepared using a conventional impregnation method. Platinum catalysts supported on gamma-Al2O3 (Pt/Al) were prepared for comparison. The physicochemical properties of the RM, HRM and Pt/HRM catalysts were characterized by BET analysis, ICP-AES, H2-TPD, XRD, FTIR, SEM, and FE-TEM. The acid treatment increased the BET surface area of the RM significantly, resulting in an increase in catalytic activity. Increasing the calcination temperature from 400 degrees C to 600 degrees C caused a decrease in its catalytic activity. Increasing the platinum loading on HRM(400) from 0.1 wt.% to 1 wt.% led to an increase in the toluene conversion, which was attributed to the better redox properties. The catalytic activities of the Pt/HRM(400) catalysts were superior to those of the Pt/Al catalysts. Benzene, toluene, o-xylene, and hexane were oxidized completely over the 1 wt.% Pt/HRM(400) catalyst at reaction temperatures less than 280 degrees C. The presence of water vapor in the feed had a negative effect on the activity of the 1 wt.% Pt/HRM(400) catalyst" |
Keywords: | Complete oxidation Lattice oxygen Platinum Red mud Volatile organic compounds; |
Notes: | "PubMed-not-MEDLINEKim, Sang Chai Nahm, Seung Won Park, Young-Kwon eng Research Support, Non-U.S. Gov't Netherlands 2015/07/15 J Hazard Mater. 2015 Dec 30; 300:104-113. doi: 10.1016/j.jhazmat.2015.06.059. Epub 2015 Jun 27" |