Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPatterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age    Next AbstractOlfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses »

J Breath Res


Title:Spatial mapping of VOC exhalation by means of bronchoscopic sampling
Author(s):Fuchs P; Trautner M; Sass R; Kamysek S; Miekisch W; Bier A; Stoll P; Schubert JK;
Address:"Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, ROMBAT, Germany. Department of Pneumology and Interdisciplinary Internal Medicine Intensive Care, Rostock University Medical Centre, Germany"
Journal Title:J Breath Res
Year:2020
Volume:20201006
Issue:4
Page Number:46012 -
DOI: 10.1088/1752-7163/abb478
ISSN/ISBN:1752-7163 (Electronic) 1752-7155 (Linking)
Abstract:"Breath analysis holds promise for non-invasive in vivo monitoring of disease related processes. However, physiological parameters may considerably affect profiles of exhaled volatile organic substances (VOCs). Volatile substances can be released via alveoli, bronchial mucosa or from the upper airways. The aim of this study was the systematic investigation of the influence of different sampling sites in the respiratory tract on VOC concentration profiles by means of a novel experimental setup. After ethical approval, breath samples were collected from 25 patients undergoing bronchoscopy for endobronchial ultrasound or bronchoscopic lung volume reduction from different sites in the airways. All patients had total intravenous anaesthesia under pressure-controlled ventilation. If necessary, respiratory parameters were adjusted to keep P(ET)CO(2) = 35-45 mm Hg. 30 ml gas were withdrawn at six sampling sites by means of gastight glass syringes: S1 = Room air, S2 = Inspiration, S3 = Endotracheal tube, S4 = Trachea, S5 = Right B6 segment, S6 = Left B6 segment (S4-S6 through the bronchoscope channel). 10 ml were used for VOC analysis, 20 ml for PCO(2) determination. Samples were preconcentrated by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). PCO(2) was determined in a conventional blood gas analyser. Statistically significant differences in substance concentrations for acetone, isoprene, 2-methyl-pentane and n-hexane could be observed between different sampling sites. Increasing substance concentrations were determined for acetone (15.3%), 2-methyl-pentane (11.4%) and n-hexane (19.3%) when passing from distal to proximal sampling sites. In contrast, isoprene concentrations decreased by 9.9% from proximal to more distal sampling sites. Blank bronchoscope measurements did not show any contaminations. Increased substance concentrations in the proximal respiratory tract may be explained through substance excretion from bronchial mucosa while decreased concentrations could result from absorption or reaction processes. Spatial mapping of VOC profiles can provide novel insights into substance specific exhalation kinetics and mechanisms"
Keywords:Breath Tests/*methods *Bronchoscopy Carbon Dioxide/chemistry *Exhalation Female Humans Limit of Detection Lung/chemistry Male Middle Aged Partial Pressure *Specimen Handling Volatile Organic Compounds/*analysis;
Notes:"MedlineFuchs, Patricia Trautner, Markus Sass, Radost Kamysek, Svend Miekisch, Wolfram Bier, Andrea Stoll, Paul Schubert, Jochen K eng England 2020/10/07 J Breath Res. 2020 Oct 6; 14(4):046012. doi: 10.1088/1752-7163/abb478"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025