Title: | Two-dimensional analytical solution for VOC vapor migration through layered soil laterally away from the edge of contaminant source |
Author(s): | Feng SJ; Zhu ZW; Chen HX; Chen ZL; |
Address: | "Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. Electronic address: fsjgly@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. Electronic address: 1630535@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. Electronic address: chenhongxin@tongji.edu.cn. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China. Electronic address: chenzhanglong@tongji.edu.cn" |
DOI: | 10.1016/j.jconhyd.2020.103664 |
ISSN/ISBN: | 1873-6009 (Electronic) 0169-7722 (Linking) |
Abstract: | "A two-dimensional analytical solution is developed to simulate vapor migration in layered soil laterally away from the edge of contaminant source and has advantages in considering the vapor concentration profile in a functional form near the source edge. The analytical solution is validated against existing analytical solution, numerical model and experimental results. It has also proved to be an alternative screening tool to evaluate the vapor intrusion (VI) risk by compared with existing VI assessment tools. The influence of the characteristics of contaminant source and soil layer on the VI risk are investigated. The existence of capillary fringe effectively reduces VI risk. Among all the single-layer-soil cases, the lateral inclusion zone for sand is the widest due to the thinnest capillary fringe and the lowest effective diffusivity ratio between soil and capillary fringe. For layered soil, the lower effective diffusivity layer overlying the higher one enhances the horizontal diffusion and extends the lateral inclusion zone. The width of lateral inclusion zone increases logarithmically with increasing source concentration while it increases linearly with increasing source depth. Based on the calculation results, a simplified formula is proposed to preliminarily estimate the width of lateral inclusion zone for the typical single-layer-soil cases considering the capillary fringe" |
Keywords: | "Gases Models, Theoretical Soil *Soil Pollutants/analysis *Volatile Organic Compounds Analytical solution Lateral inclusion zone Layered soil Two-dimensional model Vapor intrusion;" |
Notes: | "MedlineFeng, Shi-Jin Zhu, Zhang-Wen Chen, Hong-Xin Chen, Zhang-Long eng Netherlands 2020/06/23 J Contam Hydrol. 2020 Aug; 233:103664. doi: 10.1016/j.jconhyd.2020.103664. Epub 2020 Jun 10" |