Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSensory Characteristics and Volatile Components of Dry Dog Foods Manufactured with Sorghum Fractions    Next AbstractSelective MS screening reveals a sex pheromone in Caenorhabditis briggsae and species-specificity in indole ascaroside signalling »

Neuroscience


Title:Protein kinase Calpha mediates a novel form of plasticity in the accessory olfactory bulb
Author(s):Dong C; Godwin DW; Brennan PA; Hegde AN;
Address:"Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-0001, USA"
Journal Title:Neuroscience
Year:2009
Volume:20090704
Issue:3
Page Number:811 - 824
DOI: 10.1016/j.neuroscience.2009.06.069
ISSN/ISBN:1873-7544 (Electronic) 0306-4522 (Print) 0306-4522 (Linking)
Abstract:"Modification of synapses in the accessory olfactory bulb (AOB) is believed to underlie pheromonal memory that enables mate recognition in mice. The memory, which is acquired with single-trial learning, forms only with coincident noradrenergic and glutamatergic inputs to the AOB. The mechanisms by which glutamate and norepinephrine (NE) alter the AOB synapses are not well understood. Here we present results that not only reconcile the earlier, seemingly contradictory, observations on the role of glutamate and NE in changing the AOB synapses, but also reveal novel mechanisms of plasticity. Our studies suggest that initially, glutamate acting at Group II metabotropic receptors and NE acting at alpha(2)-adrenergic receptors inhibit N-type and R-type Ca(2+) channels in mitral cells via a G-protein. The N-type and R-type Ca(2+) channel inhibition is reversed by activation of alpha(1)-adrenergic receptors and protein kinase Calpha (PKCalpha). Based on these results, we propose a hypothetical model for a new kind of synaptic plasticity in the AOB that accounts for the previous behavioral data on pheromonal memory. According to this model, initial inhibition of the Ca(2+) channels suppresses the GABAergic inhibitory feedback to mitral cells, causing disinhibition and Ca(2+) influx. NE also activates phospholipase C (PLC) through alpha(1)-adrenergic receptors generating inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Calcium and DAG together activate PKCalpha which switches the disinhibition to increased inhibition of mitral cells. Thus, PKCalpha is likely to be a coincidence detector integrating glutamate and NE input in the AOB and bridging the short-term signaling to long-term structural changes resulting in enhanced inhibition of mitral cells that is thought to underlie memory formation"
Keywords:"Animals Calcium/physiology Calcium Channels, N-Type/physiology Calcium Channels, R-Type/physiology Female GTP-Binding Proteins/physiology Glutamic Acid/pharmacology/physiology In Vitro Techniques Inhibitory Postsynaptic Potentials/drug effects Isoenzymes/;"
Notes:"MedlineDong, C Godwin, D W Brennan, P A Hegde, A N eng R21 DC006856/DC/NIDCD NIH HHS/ R21 DC006856-01/DC/NIDCD NIH HHS/ R21DC006856/DC/NIDCD NIH HHS/ R21 EY018159/EY/NEI NIH HHS/ R21EY0018159/EY/NEI NIH HHS/ R21 DC006856-02/DC/NIDCD NIH HHS/ R01AA016852/AA/NIAAA NIH HHS/ R01 AA016852/AA/NIAAA NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't 2009/07/08 Neuroscience. 2009 Oct 20; 163(3):811-24. doi: 10.1016/j.neuroscience.2009.06.069. Epub 2009 Jul 4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024