Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCarbonyl flavor compound-targeted colorimetric sensor array based on silver nitrate and o-phenylenediamine derivatives for the discrimination of Chinese Baijiu    Next AbstractIncreased Susceptibility for Adverse Reactions to Ultrasound Enhancing Agents in Sickle Cell Disease »

Proc Natl Acad Sci U S A


Title:Efficient control of western flower thrips by plastid-mediated RNA interference
Author(s):Wu M; Dong Y; Zhang Q; Li S; Chang L; Loiacono FV; Ruf S; Zhang J; Bock R;
Address:"State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Max Planck Institut fur Molekulare Pflanzenphysiologie, Department III, D-14476 Potsdam-Golm, Germany"
Journal Title:Proc Natl Acad Sci U S A
Year:2022
Volume:20220405
Issue:15
Page Number:e2120081119 -
DOI: 10.1073/pnas.2120081119
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture"
Keywords:"Animals *Pest Control, Biological/methods *Plastids/genetics *RNA Interference RNA, Double-Stranded *RNA, Plant/genetics *Thysanoptera/genetics Tobacco/genetics/parasitology Nicotiana tabacum RNAi Thysanoptera pest control plastid transformation;"
Notes:"MedlineWu, Mengting Dong, Yi Zhang, Qi Li, Shengchun Chang, Ling Loiacono, F Vanessa Ruf, Stephanie Zhang, Jiang Bock, Ralph eng 2022/04/06 Proc Natl Acad Sci U S A. 2022 Apr 12; 119(15):e2120081119. doi: 10.1073/pnas.2120081119. Epub 2022 Apr 5"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024