Title: | "Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems: optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse" |
Author(s): | Venturi V; Presini F; Trapella C; Bortolini O; Giovannini PP; Lerin LA; |
Address: | "Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy. Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy. Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy. lrnldm@unife.it" |
DOI: | 10.1007/s11030-023-10682-y |
ISSN/ISBN: | 1573-501X (Electronic) 1381-1991 (Linking) |
Abstract: | "Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 degrees C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 degrees C and 7% lipase in the presence of 5A molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters" |
Keywords: | Geranyl (R)-3-hydroxybutyrate Geranyl acetoacetate Geranyl butyrate Geranyl hexanoate Geranyl octanoate Lipozyme 435; |
Notes: | "PublisherVenturi, Valentina Presini, Francesco Trapella, Claudio Bortolini, Olga Giovannini, Pier Paolo Lerin, Lindomar Alberto eng Netherlands 2023/06/27 Mol Divers. 2023 Jun 27. doi: 10.1007/s11030-023-10682-y" |