Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression    Next AbstractCarcass Age and Reproductive Costs for Nicrophorus orbicollis (Coleoptera: Silphidae) »

Proc Natl Acad Sci U S A


Title:Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates
Author(s):Truman W; Bennett MH; Kubigsteltig I; Turnbull C; Grant M;
Address:"School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom"
Journal Title:Proc Natl Acad Sci U S A
Year:2007
Volume:20070110
Issue:3
Page Number:1075 - 1080
DOI: 10.1073/pnas.0605423104
ISSN/ISBN:0027-8424 (Print) 1091-6490 (Electronic) 0027-8424 (Linking)
Abstract:"In the absence of adaptive immunity displayed by animals, plants respond locally to biotic challenge via inducible basal defense networks activated through recognition and response to conserved pathogen-associated molecular patterns. In addition, immunity can be induced in tissues remote from infection sites by systemic acquired resistance (SAR), initiated after gene-for-gene recognition between plant resistance proteins and microbial effectors. The nature of the mobile signal and remotely activated networks responsible for establishing SAR remain unclear. Salicylic acid (SA) participates in the local and systemic response, but SAR does not require long-distance translocation of SA. Here, we show that, despite the absence of pathogen-associated molecular pattern contact, systemically responding leaves rapidly activate a SAR transcriptional signature with strong similarity to local basal defense. We present several lines of evidence that suggest jasmonates are central to systemic defense, possibly acting as the initiating signal for classic SAR. Jasmonic acid (JA), but not SA, rapidly accumulates in phloem exudates of leaves challenged with an avirulent strain of Pseudomonas syringae. In systemically responding leaves, transcripts associated with jasmonate biosynthesis are up-regulated within 4 h, and JA increases transiently. SAR can be mimicked by foliar JA application and is abrogated in mutants impaired in jasmonate synthesis or response. We conclude that jasmonate signaling appears to mediate long-distance information transmission. Moreover, the systemic transcriptional response shares extraordinary overlap with local herbivory and wounding responses, indicating that jasmonates may be pivotal to an evolutionarily conserved signaling network that decodes multiple abiotic and biotic stress signals"
Keywords:"Arabidopsis/genetics/*immunology/*metabolism Arabidopsis Proteins/genetics/metabolism Cyclopentanes/*metabolism Gene Expression Profiling Gene Expression Regulation, Plant Mutation/genetics Oxylipins *Signal Transduction Time Factors Transcription, Geneti;"
Notes:"MedlineTruman, William Bennett, Mark H Kubigsteltig, Ines Turnbull, Colin Grant, Murray eng BB/C514115/1/BB_/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't 2007/01/12 Proc Natl Acad Sci U S A. 2007 Jan 16; 104(3):1075-80. doi: 10.1073/pnas.0605423104. Epub 2007 Jan 10"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024