Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffect of storage under extremely low oxygen on the volatile composition of 'Royal Gala' apples    Next AbstractMeteorological detrending of long-term (2003-2017) ozone and precursor concentrations at three sites in the Houston Ship Channel Region »

J Air Waste Manag Assoc


Title:Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area
Author(s):Botlaguduru VSV; Kommalapati RR; Huque Z;
Address:"a Center for Energy & Environmental Sustainability , Prairie View A&M University , Prairie View , TX. b Department of Civil & Environmental Engineering , Prairie View A&M University , Prairie View , TX. c Department of Mechanical Engineering , Prairie View A&M University , Prairie View , TX"
Journal Title:J Air Waste Manag Assoc
Year:2018
Volume:20180628
Issue:10
Page Number:1051 - 1064
DOI: 10.1080/10962247.2018.1466740
ISSN/ISBN:2162-2906 (Electronic) 1096-2247 (Linking)
Abstract:"The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and high humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique, used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (U.S. Environmental Protection Agency [EPA] Air Quality System [AQS] Site ID: 48-201-0024, Aldine) in the HGB area. This site, located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000 and 2016. This pattern could be partially attributed to a reduction in underlying nitrogen oxide (NO(x)) emissions, particularly lowering nitrogen dioxide (NO(2)) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOCs). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), whereas 64% of the change in long-term MDA8 ozone post 2000 could be attributed to NO(x) emission reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 +/- 0.007 ppb/yr for the years 2000-2016 and 0.155 +/- 0.005 ppb/yr for the overall period of 1990-2016. IMPLICATIONS: The effectiveness of air emission controls can be evaluated by developing long-term air quality trends independent of meteorological influences. The KZ filter technique is a well-established method to separate an air quality time series into short-term, seasonal, and long-term components. This paper applies the KZ filter technique to MDA8 ozone data between 1990 and 2016 at an urban site in the greater Houston area and estimates the variance accounted for by the primary meteorological control variables. Estimates for linear trends of MDA8 ozone are calculated and underlying causes are investigated to provide a guidance for further investigation into air quality management of the greater Houston area"
Keywords:Air Pollutants/analysis Air Pollution/analysis *Environmental Monitoring/methods/statistics & numerical data Humans Meteorological Concepts Nitrogen Dioxide/analysis Nitrogen Oxides/analysis Ozone/*analysis Temperature Texas/epidemiology Volatile Organic;
Notes:"MedlineBotlaguduru, Venkata S V Kommalapati, Raghava R Huque, Ziaul eng Research Support, U.S. Gov't, Non-P.H.S. 2018/04/20 J Air Waste Manag Assoc. 2018 Oct; 68(10):1051-1064. doi: 10.1080/10962247.2018.1466740. Epub 2018 Jun 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024