Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractInfluence of processing on the volatile profile of strawberry spreads made with isomaltulose    Next Abstract"Changes in gluconic acid, polyols and major volatile compounds in sherry wine during aging with submerged flor yeast cultures" »

Rapid Commun Mass Spectrom


Title:Hyphenation of proton transfer reaction mass spectrometry with thermal analysis for monitoring the thermal degradation of retinyl acetate
Author(s):Peinado I; Mason M; Biasioli F; Scampicchio M;
Address:"Faculty of Science and Technology, Free University of Bolzano, Piazza Universita 5, 39100, Bolzano, Italy. Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010, San Michele all'Adige, TN, Italy"
Journal Title:Rapid Commun Mass Spectrom
Year:2018
Volume:32
Issue:1
Page Number:57 - 62
DOI: 10.1002/rcm.7993
ISSN/ISBN:1097-0231 (Electronic) 0951-4198 (Linking)
Abstract:"RATIONALE: The processing of retinyl acetate, a vitamin and biomarker, at high temperatures causes significant decomposition of the compound and thus loss of its activity. The rate of mass loss can be conveniently studied by thermogravimetry (TG). However, this technique generally fails to reveal which compounds have evolved from the compound. In this work we propose a new hyphenation approach to continuously monitor the thermal decomposition of retinyl acetate and follow the evolution of specific volatile organic compounds (VOCs). METHODS: Thermal degradation of retinyl acetate was followed by TG coupled to a direct injection mass spectrometer based on proton transfer reaction mass spectrometry (PTR-MS) to follow continuously the thermal decomposition of retinyl acetate. The results were also compared with those obtained by a second evolved gas analysis system based on the coupling of TG with FTIR. RESULTS: The TG results showed two main mass losses, at 180 degrees C and 350 degrees C. When the PTR-MS instrument was connected to the outlet of the TG instrument, specific fragment ions (m/z 43, 61, 75, 85 and 97) showed characteristic evolution profiles. The first mass loss was mainly associated with the release of acetic acid (m/z 43 and 61), whereas the second mass loss was connected with the degradation of the molecule backbone (m/z 43, 61, 75, 85 and 97). These results were substantially correlated with those achieved by TG coupled with FTIR, although PTR-MS showed superior performance in terms of the qualitative identification of specific fragments and better sensitivity toward complex organic VOCs. CONCLUSIONS: The proposed TG-PTR-MS technique shows a great potential for following in real time the thermal degradation of ingredients such as retinyl acetate and identifying compounds evolved at specific temperatures"
Keywords:Acetic Acid/chemistry Diterpenes Hot Temperature Mass Spectrometry/*methods Protons Retinyl Esters Vitamin A/*analogs & derivatives/chemistry Volatile Organic Compounds/chemistry;
Notes:"MedlinePeinado, Irene Mason, Marco Biasioli, Franco Scampicchio, Matteo eng Evaluation Study England 2017/09/16 Rapid Commun Mass Spectrom. 2018 Jan 15; 32(1):57-62. doi: 10.1002/rcm.7993"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024