Title: | In vitro detection of small molecule metabolites excreted from cancer cells using a Tenax TA thin-film microextraction device |
Author(s): | Nozoe T; Goda S; Selyanchyn R; Wang T; Nakazawa K; Hirano T; Matsui H; Lee SW; |
Address: | "Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan. Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan; WPI International Institute for Carbon-Neutral Energy Research (WPI-I(2) CNER), Kyushu University, Fukuoka 819-0395, Japan. Shinkou Seiki Co. Ltd., Fukuoka 812-0054, Japan. Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan. Electronic address: leesw@kitakyu-u.ac.jp" |
Journal Title: | J Chromatogr B Analyt Technol Biomed Life Sci |
DOI: | 10.1016/j.jchromb.2015.04.016 |
ISSN/ISBN: | 1873-376X (Electronic) 1570-0232 (Linking) |
Abstract: | "We developed a new device for the in vitro extraction of small molecule metabolites excreted from cancer cells. The extraction device, which was biocompatible and incubated with cancer cells, consists of a thin Tenax TA film deposited on the surface of a cylindrical aluminum rod. The Tenax TA solid phase was utilized for the direct extraction and preconcentration of the small molecule metabolites from a cell culture sample. The device fabrication and the metabolite extraction were optimized, tested, and validated using HeLa cell cultures. Comparison of metabolic profiles with the control measurement from the culture medium enabled detection of metabolites that were consumed or produced by the cell culture. Tentative identification and semi-quantitative investigation of the excreted metabolites were performed by GC-MS analysis. The proposed approach can be a valuable tool for the characterization of low-volatile cancer cell metabolites that are not covered by use of conventional methods based on headspace solid phase microextraction" |
Keywords: | Cell Culture Techniques Equipment Design Gas Chromatography-Mass Spectrometry/methods HeLa Cells Humans Neoplasms/*chemistry Polymers Solid Phase Microextraction/*instrumentation/methods Volatile Organic Compounds/analysis/*isolation & purification Cell c; |
Notes: | "MedlineNozoe, Takuma Goda, Shigemi Selyanchyn, Roman Wang, Tao Nakazawa, Kohji Hirano, Takeshi Matsui, Hidetaka Lee, Seung-Woo eng Research Support, Non-U.S. Gov't Netherlands 2015/05/02 J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Jun 1; 991:99-107. doi: 10.1016/j.jchromb.2015.04.016. Epub 2015 Apr 18" |