Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGrowth and metabolites production by Penicillium brevicompactum in yoghurt    Next AbstractIndividual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal) »

Ann Bot


Title:Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness
Author(s):Ndah F; Valolahti H; Schollert M; Michelsen A; Rinnan R; Kivimaenpaa M;
Address:"Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen O 2100, Denmark. Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K 1350, Denmark. Ramboll, Niemenkatu 73, 15140, Lahti, Finland. Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. Natural Resources Institute Finland, Juntintie 154, 77600 Suonenjoki, Finland"
Journal Title:Ann Bot
Year:2022
Volume:129
Issue:4
Page Number:443 - 455
DOI: 10.1093/aob/mcac004
ISSN/ISBN:1095-8290 (Electronic) 0305-7364 (Print) 0305-7364 (Linking)
Abstract:"BACKGROUND AND AIMS: Climate change is subjecting subarctic ecosystems to elevated temperature, increased nutrient availability and reduced light availability (due to increasing cloud cover). This may affect subarctic vegetation by altering the emissions of biogenic volatile organic compounds (BVOCs) and leaf anatomy. We investigated the effects of increased nutrient availability on BVOC emissions and leaf anatomy of three subarctic dwarf shrub species, Empetrum hermaphroditum, Cassiope tetragona and Betula nana, and if increased nutrient availability modifies the responses to warming and shading. METHODS: Measurements of BVOCs were performed in situ in long-term field experiments in the Subarctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Leaf anatomy was studied using light microscopy and scanning electron microscopy. KEY RESULTS: Increased nutrient availability increased monoterpene emission rates and altered the emission profile of B. nana, and increased sesquiterpene and oxygenated monoterpene emissions of C. tetragona. Increased nutrient availability increased leaf tissue thicknesses of B. nana and C. tetragona, while it caused thinner epidermis and the highest fraction of functional (intact) glandular trichomes for E. hermaphroditum. Increased nutrient availability and warming synergistically increased mesophyll intercellular space of B. nana and glandular trichome density of C. tetragona, while treatments combining increased nutrient availability and shading had an opposite effect in C. tetragona. CONCLUSIONS: Increased nutrient availability may enhance the protection capacity against biotic and abiotic stresses (especially heat and drought) in subarctic shrubs under future warming conditions as opposed to increased cloudiness, which could lead to decreased resistance. The study emphasizes the importance of changes in nutrient availability in the Subarctic, which can interact with climate warming and increased cloudiness effects"
Keywords:Climate Change Ecosystem *Ericaceae/physiology Monoterpenes/analysis Nutrients Plant Leaves/physiology *Volatile Organic Compounds/analysis Betula nana Cassiope tetragona Empetrum hermaphroditum Arctic soil nutrients temperature terpenoid tundra;
Notes:"MedlineNdah, Flobert Valolahti, Hanna Schollert, Michelle Michelsen, Anders Rinnan, Riikka Kivimaenpaa, Minna eng Research Support, Non-U.S. Gov't England 2022/01/15 Ann Bot. 2022 Mar 23; 129(4):443-455. doi: 10.1093/aob/mcac004"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024