Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAccessory olfactory bulb neurons are required for maintenance but not induction of V2R vomeronasal receptor gene expression in vitro    Next Abstract"Efficient production of recombinant human pleiotrophin in yeast, Pichia pastoris" »

Plant Physiol


Title:Glutathionylation and Reduction of Methacrolein in Tomato Plants Account for Its Absorption from the Vapor Phase
Author(s):Muramoto S; Matsubara Y; Mwenda CM; Koeduka T; Sakami T; Tani A; Matsui K;
Address:"Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan (S.M., Y.M. C.M.M., T.K., K.M.); andInstitute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan (T.S., A.T.). Department of Biological Chemistry, Faculty of Agriculture, and Department of Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan (S.M., Y.M. C.M.M., T.K., K.M.); andInstitute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan (T.S., A.T.) matsui@yamaguchi-u.ac.jp"
Journal Title:Plant Physiol
Year:2015
Volume:20150713
Issue:3
Page Number:1744 - 1754
DOI: 10.1104/pp.15.01045
ISSN/ISBN:1532-2548 (Electronic) 0032-0889 (Print) 0032-0889 (Linking)
Abstract:"A large portion of the volatile organic compounds emitted by plants are oxygenated to yield reactive carbonyl species, which have a big impact on atmospheric chemistry. Deposition to vegetation driven by the absorption of reactive carbonyl species into plants plays a major role in cleansing the atmosphere, but the mechanisms supporting this absorption have been little examined. Here, we performed model experiments using methacrolein (MACR), one of the major reactive carbonyl species formed from isoprene, and tomato (Solanum lycopersicum) plants. Tomato shoots enclosed in a jar with MACR vapor efficiently absorbed MACR. The absorption efficiency was much higher than expected from the gas/liquid partition coefficient of MACR, indicating that MACR was likely metabolized in leaf tissues. Isobutyraldehyde, isobutyl alcohol, and methallyl alcohol (MAA) were detected in the headspace and inside tomato tissues treated with MACR vapor, suggesting that MACR was enzymatically reduced. Glutathione (GSH) conjugates of MACR (MACR-GSH) and MAA (MAA-GSH) were also detected. MACR-GSH was essentially formed through spontaneous conjugation between endogenous GSH and exogenous MACR, and reduction of MACR-GSH to MAA-GSH was likely catalyzed by an NADPH-dependent enzyme in tomato leaves. Glutathionylation was the metabolic pathway most responsible for the absorption of MACR, but when the amount of MACR exceeded the available GSH, MACR that accumulated reduced photosynthetic capacity. In an experiment simulating the natural environment using gas flow, MACR-GSH and MAA-GSH accumulation accounted for 30% to 40% of the MACR supplied. These results suggest that MACR metabolism, especially spontaneous glutathionylation, is an essential factor supporting MACR absorption from the atmosphere by tomato plants"
Keywords:"Absorption, Physicochemical/physiology Acrolein/*analogs & derivatives/chemistry/metabolism Biodegradation, Environmental Butadienes/*chemistry Glutathione/chemistry/metabolism Hemiterpenes/*chemistry Solanum lycopersicum/*chemistry/metabolism Oxidation-R;"
Notes:"MedlineMuramoto, Shoko Matsubara, Yayoi Mwenda, Cynthia Mugo Koeduka, Takao Sakami, Takuya Tani, Akira Matsui, Kenji eng Research Support, Non-U.S. Gov't 2015/07/15 Plant Physiol. 2015 Nov; 169(3):1744-54. doi: 10.1104/pp.15.01045. Epub 2015 Jul 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 06-07-2024