Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEstradiol modulates neural responses to song in a seasonal songbird    Next AbstractContribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol »

Mol Ecol


Title:Molecular and social regulation of worker division of labour in fire ants
Author(s):Manfredini F; Lucas C; Nicolas M; Keller L; Shoemaker D; Grozinger CM;
Address:"Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA; School of Biological Sciences, Royal Holloway University of London, Egham, TW 20 0EX, UK"
Journal Title:Mol Ecol
Year:2014
Volume:23
Issue:3
Page Number:660 - 672
DOI: 10.1111/mec.12626
ISSN/ISBN:1365-294X (Electronic) 0962-1083 (Linking)
Abstract:"Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta"
Keywords:"Animals Ants/*genetics/*physiology Appetitive Behavior *Behavior, Animal Female Gene Expression Genes, Insect Oligonucleotide Array Sequence Analysis *Social Behavior Transcriptome division of labour fire ants foraging workers microarrays queen pheromone;"
Notes:"MedlineManfredini, Fabio Lucas, Christophe Nicolas, Michael Keller, Laurent Shoemaker, Dewayne Grozinger, Christina M eng Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2013/12/18 Mol Ecol. 2014 Feb; 23(3):660-72. doi: 10.1111/mec.12626"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 15-01-2025