Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChanges in behavior are unable to disrupt a trophic cascade involving a specialist herbivore and its food plant    Next AbstractAnt Colony-Based Hyperparameter Optimisation in Total Variation Reconstruction in X-ray Computed Tomography »

Oecologia


Title:Decomposers and root feeders interactively affect plant defence in Sinapis alba
Author(s):Lohmann M; Scheu S; Muller C;
Address:"Institute of Zoology, Darmstadt University of Technology, Schnittspahnstrasse 3, 64287 Darmstadt, Germany"
Journal Title:Oecologia
Year:2009
Volume:20090301
Issue:2
Page Number:289 - 298
DOI: 10.1007/s00442-009-1306-0
ISSN/ISBN:1432-1939 (Electronic) 0029-8549 (Print) 0029-8549 (Linking)
Abstract:"Aboveground herbivory is well known to change plant growth and defence. In contrast, effects of soil organisms, acting alone or in concert, on allocation patterns are less well understood. We investigated separate and combined effects of the endogeic earthworm species Aporrectodea caliginosa and the root feeding nematode species Pratylenchus penetrans and Meloidogyne incognita on plant responses including growth and defence metabolite concentrations in leaves of white mustard, Sinapis alba. Soil biota had a strong impact on plant traits, with the intensity varying due to species combinations. Nematode infestation reduced shoot biomass and nitrogen concentration but only in the absence of earthworms. Earthworms likely counteracted the negative effects of nematodes. Infestation with the migratory lesion-nematode P. penetrans combined with earthworms led to increased root length. Earthworm biomass increased in the presence of this species, indicating that these nematodes increased the food resources of earthworms-presumably dead and decaying roots. Nitrogen-based defence compounds, i.e. glucosinolates, did not correlate with nitrogen levels. In the presence of earthworms, concentrations of aromatic glucosinolates in leaves were significantly increased. In contrast, infection with P. penetrans strongly decreased concentrations of glucosinolates (up to 81%). Infestation with the sedentary nematode M. incognita induced aromatic glucosinolates by more than 50% but only when earthworms were also present. Myrosinase activities, glucosinolate-hydrolysing enzymes, were unaffected by nematodes but reduced in the presence of earthworms. Our results document that root-feeding nematodes elicit systemic plant responses in defence metabolites, with the responses varying drastically with nematode species of different functional groups. Furthermore, systemic plant responses are also altered by decomposer animals, such as earthworms, challenging the assumption that induction of plant responses including defence traits is restricted to herbivores. Soil animals even interact and modulate the individual effects on plant growth and plant defence, thereby likely also influencing shoot herbivore attack"
Keywords:Analysis of Variance Animals *Food Chain Glucosinolates/metabolism Glycoside Hydrolases/metabolism Host-Parasite Interactions Nitrogen/metabolism *Oligochaeta Plant Roots/growth & development/*parasitology Sinapis/*growth & development/metabolism/parasito;
Notes:"MedlineLohmann, Maite Scheu, Stefan Muller, Caroline eng Research Support, Non-U.S. Gov't Germany 2009/03/03 Oecologia. 2009 May; 160(2):289-98. doi: 10.1007/s00442-009-1306-0. Epub 2009 Mar 1"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025