Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractChemiluminescence determination of chlorinated volatile organic compounds by conversion on nanometer TiO2    Next AbstractElements of the yeast pheromone response pathway required for filamentous growth of diploids »

J Cell Biol


Title:Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport
Author(s):Liu H; Bretscher A;
Address:"Section of Biochemistry, Cornell University, Ithaca, New York 14853"
Journal Title:J Cell Biol
Year:1992
Volume:118
Issue:2
Page Number:285 - 299
DOI: 10.1083/jcb.118.2.285
ISSN/ISBN:0021-9525 (Print) 1540-8140 (Electronic) 0021-9525 (Linking)
Abstract:"Disruption of the yeast tropomyosin gene TPM1 results in the apparent loss of actin cables from the cytoskeleton (Liu, H., and A. Bretscher. 1989. Cell. 57:233-242). Here we show that TPM1 disrupted cells grow slowly, show heterogeneity in cell size, have delocalized deposition of chitin, and mate poorly because of defects in both shmooing and cell fusion. The transit time of alpha-factor induced a-agglutinin secretion to the cell surface is longer than in isogenic wild-type strains, and some of the protein is mislocalized. Many of the TPM1-deleted cells contain abundant vesicles, similar in morphology to late secretory vesicles, but without an abnormal accumulation of intermediates in the delivery of either carboxypeptidase Y to the vacuole or invertase to the cell surface. Combinations of the TPM1 disruption with sec13 or sec18 mutations, which affect early steps in the secretory pathway, block vesicle accumulation, while combinations with sec1, sec4 or sec6 mutations, which affect a late step in the secretory pathway, have no effect on the vesicle accumulation. The phenotype of the TPM1 disrupted cells is very similar to that of a conditional mutation in the MYO2 gene, which encodes a myosin-like protein (Johnston, G. C., J. A. Prendergast, and R. A. Singer. 1991. J. Cell Biol. 113:539-551). The myo2-66 conditional mutation shows synthetic lethality with the TPM1 disruption, indicating that the MYO2 and TPM1 gene products may be involved in the same, or parallel function. We conclude that tropomyosin, and by inference actin cables, may facilitate directed vesicular transport of components to the correct location on the cell surface"
Keywords:"Chitin/metabolism *Chromosome Deletion Crosses, Genetic Cytoplasmic Granules/physiology/*ultrastructure Diploidy *Genes, Fungal Genotype Glycoside Hydrolases/*metabolism Glycosylation Kinetics Mating Factor Microscopy, Electron Peptides/metabolism Pheromo;"
Notes:"MedlineLiu, H Bretscher, A eng GM39066/GM/NIGMS NIH HHS/ Research Support, U.S. Gov't, P.H.S. 1992/07/01 J Cell Biol. 1992 Jul; 118(2):285-99. doi: 10.1083/jcb.118.2.285"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024