Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAnthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris    Next AbstractExploring the potential of Saccharomyces eubayanus as a parent for new interspecies hybrid strains in winemaking »

Planta


Title:Inefficient weapon-the role of plant secondary metabolites in cotton defence against the boll weevil
Author(s):Magalhaes DM; Borges M; Laumann RA; Caulfield JC; Birkett MA; Blassioli-Moraes MC;
Address:"Department of Zoology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, 70910?ª╡900, Brazil. EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, 70770-917, Brazil. Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK. EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, 70770-917, Brazil. carolina.blassioli@embrapa.br"
Journal Title:Planta
Year:2020
Volume:20201029
Issue:5
Page Number:94 -
DOI: 10.1007/s00425-020-03497-w
ISSN/ISBN:1432-2048 (Electronic) 0032-0935 (Linking)
Abstract:"Cotton genotypes displayed similar volatile organic compound (VOC) profiles, but major differences in terpenoid aldehyde (TA) content. The differences in VOC production were minor among genotypes, but these differences are crucial for boll weevil attraction. Weevils did not display any preference in feeding behaviour towards cotton genotypes, suggesting physiological adaptation to cope with cotton chemical defence mechanisms. Plant cultivar selection for resistance to herbivore pests is an effective, environmentally safe and inexpensive method to implement in integrated pest management programmes. In this study, we evaluated seven cotton genotypes with respect to the production of volatile organic compounds (VOCs) and non-volatile compounds [terpenoid aldehydes (TAs)], and the attraction and feeding preference of adult boll weevils. Chemical analyses of VOCs from BRS-293, BRS-Rubi, CNPA TB-15, CNPA TB-85, CNPA TB-90, Delta Opal, and Empire Glandless showed that there were few qualitative and quantitative differences across the range of genotypes. In contrast, major differences in TA content were observed, with CNPA TB-15 and CNPA TB-85 producing higher levels of TAs compared to the other genotypes. Our results showed that boll weevil attraction to cotton genotypes varied, suggesting that the ratios and quantities of emitted cotton VOCs are important for host location. However, boll weevil feeding behaviour was neither positively nor negatively influenced by the terpenoid content (non-volatile compounds) of cotton genotypes. The results in this study suggest that boll weevils have adapted physiologically to cope with cotton chemical defence mechanisms"
Keywords:Animals Food Preferences/drug effects Genotype *Gossypium/chemistry/genetics *Herbivory/drug effects *Terpenes/metabolism *Volatile Organic Compounds/metabolism/pharmacology *Weevils/drug effects/physiology Anthonomus grandis Gossypium hirsutum Herbivore;
Notes:"MedlineMagalhaes, Diego Martins Borges, Miguel Laumann, Raul Alberto Caulfield, John C Birkett, Michael A Blassioli-Moraes, Maria Carolina eng 11.14.09.001.04.03.002/Empresa Brasileira de Pesquisa Agropecuaria/ 307104/2018-4/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/ 304329/2017-7/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/ Germany 2020/10/31 Planta. 2020 Oct 29; 252(5):94. doi: 10.1007/s00425-020-03497-w"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024