Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Archaea, tiny helpers of land plants"    Next AbstractEmission rates of air pollutants from portable gas ranges and nitrogen dioxide exposure assessment in restaurants »

Atmos Res


Title:Changes in the ozone chemical regime over the contiguous United States inferred by the inversion of NO(x) and VOC emissions using satellite observation
Author(s):Jung J; Choi Y; Mousavinezhad S; Kang D; Park J; Pouyaei A; Ghahremanloo M; Momeni M; Kim H;
Address:"Department of Earth and Atmospheric Sciences, University of Houston, TX, USA. Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, NC, USA. Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA. Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, USA"
Journal Title:Atmos Res
Year:2022
Volume:270
Issue:
Page Number:1 - 14
DOI: 10.1016/j.atmosres.2022.106076
ISSN/ISBN:0169-8095 (Print) 0169-8095 (Linking)
Abstract:"To investigate changes in the ozone (O(3)) chemical production regime over the contiguous United States (CONUS) with accurate knowledge of concentrations of its precursors, we applied an inverse modeling technique with Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide (NO(2)) and total formaldehyde (HCHO) retrieval products in the summers of 2011, 2014, and 2017, years in which United States National Emission Inventory were based. The inclusion of dynamic chemical lateral boundary conditions and lightning-induced nitric oxide emissions significantly account for the contribution of background sources in the free troposphere. Satellite-constrained nitrogen oxide (NO(x)) and non-methane volatile organic compounds (NMVOCs) emissions mitigate the discrepancy between satellite and modeled columns: the inversion suggested 2.33-2.84 (1.07-1.34) times higher NO(x) over the CONUS (over urban regions) and 0.28-0.81 times fewer NMVOCs emissions over the southeastern United States. The model-derived HCHO/NO(2) column ratio shows gradual spatial changes in the O(3) production regime near urban cores relative to previously defined threshold values representing NO(x) and VOC sensitive conditions. We also found apparent shifts from the NO(x)-saturated regime to the transition regime (or the transition regime to the NO(x)-limited regime) over the major cities in the western United States. In contrast, rural areas, especially in the east-southeastern United States, exhibit a decreased HCHO/NO(2) column ratio by -1.30 +/- 1.71 with a reduction in HCHO column primarily driven by meteorology, becoming sensitive to VOC emissions. Results show that incorporating satellite observations into numerical modeling could help policymakers implement appropriate emission control policies for O(3) pollution"
Keywords:Cmaq-ddm HCHO/NO2 factor Inverse modeling Omi Ozone chemical regime;
Notes:"PubMed-not-MEDLINEJung, Jia Choi, Yunsoo Mousavinezhad, Seyedali Kang, Daiwen Park, Jincheol Pouyaei, Arman Ghahremanloo, Masoud Momeni, Mahmoudreza Kim, Hyuncheol eng EPA999999/ImEPA/Intramural EPA/ Netherlands 2022/04/05 Atmos Res. 2022 Jun 1; 270:1-14. doi: 10.1016/j.atmosres.2022.106076"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024