Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAn artificial ant colonies approach to medical image segmentation    Next AbstractMaize OPR2 and LOX10 Mediate Defense against Fall Armyworm and Western Corn Rootworm by Tissue-Specific Regulation of Jasmonic Acid and Ketol Metabolism »

Sci Total Environ


Title:Abatement of VOCs mixture of emerging concern by VUV-PCO process: From lab to pilot scale
Author(s):Huang P; Li Y; Shu Y; Liang S; Huang X; Gan Y; Li G; Huang H;
Address:"School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China; Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, China. Electronic address: shuyj@mail2.sysu.edu.cn. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China. Electronic address: ganyling@mail.sysu.edu.cn. School of Chemistry, Sun Yat-Sen University, Guangzhou, China. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China. Electronic address: seabao8@gmail.com"
Journal Title:Sci Total Environ
Year:2023
Volume:20221010
Issue:Pt 2
Page Number:159295 -
DOI: 10.1016/j.scitotenv.2022.159295
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"As a kind of emerging pollutant, volatile organic compounds (VOCs) are getting increasing attention due to their contribution to the formation of atmospheric haze and O(3). Photocatalytic oxidation under vacuum ultraviolet photocatalytic oxidation (VUV-PCO) presents a promising method for VOCs degradation, but it is seldom studied for VOCs compound and the mechanism is still elusive. Herein, typical VOCs such as toluene and ethyl acetate were degraded separately or together in VUV system and in VUV-PCO system with the designed trifunctional catalyst Mn/TiO(2)/ZSM-5. Intermediates were recognized by PTR-TOF-MS. It is found that dual VOCs mixture outperformed single VOCs under both VUV process and VUV-PCO process. Possible degradation mechanisms were proposed. To explore the potential practicality of VUV-PCO technology, scale-up synthesis of Mn/TiO(2)/ZSM-5 on ceramic foams was successfully carried out and assembled into a homemade pilot-scale VUV-PCO equipment for the control of simulated VOCs complex (toluene, ethyl acetate, ethanol, and acetone). Pilot-scale catalytic testing with the monolithic catalysts achieved high removal efficiency (over 90 % efficiency after two cycles of regeneration) and confirmed the practical application possibility of VUV-PCO technology in multiple VOCs degradation. This work probes into the VUV-PCO technology applicability from lab scale to pilot scale and promotes the understanding of VUV and VUV-PCO in VOCs complex decomposition"
Keywords:*Volatile Organic Compounds Vacuum Ultraviolet Rays Catalysis Oxidation-Reduction Toluene Ethyl acetate Pilot scale Trifunctional catalyst VOCs mixture Vuv-pco;
Notes:"MedlineHuang, Pingli Li, Yiheng Shu, Yajie Liang, Shimin Huang, Xiongfei Gan, Yanling Li, Guangqin Huang, Haibao eng Netherlands 2022/10/14 Sci Total Environ. 2023 Jan 20; 857(Pt 2):159295. doi: 10.1016/j.scitotenv.2022.159295. Epub 2022 Oct 10"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024