Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques"    Next Abstract[Comprehensive Toxicity Evaluation and Toxicity Identification Used in Tannery and Textile Wastewaters] »

J Air Waste Manag Assoc


Title:Comparison of regional and global land cover products and the implications for biogenic emission modeling
Author(s):Huang L; McDonald-Buller E; McGaughey G; Kimura Y; Allen DT;
Address:"a Center for Energy and Environmental Resources , University of Texas at Austin , Austin , TX , USA"
Journal Title:J Air Waste Manag Assoc
Year:2015
Volume:65
Issue:10
Page Number:1194 - 1205
DOI: 10.1080/10962247.2015.1057302
ISSN/ISBN:1096-2247 (Print) 1096-2247 (Linking)
Abstract:"Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. IMPLICATIONS: Uncertainties in the estimation of biogenic emissions associated with the characterization of land cover in global and regional data products were examined in eastern Texas. Misclassification between trees and low-growing vegetation in central Texas resulted in substantial differences in isoprene and monoterpene emission estimates and predicted ground-level ozone concentrations. Results from this study indicate the importance of land cover validation at regional scales"
Keywords:"Air Pollutants/*analysis Air Pollution/*analysis *Environment Environmental Monitoring/*methods *Models, Theoretical Texas;"
Notes:"MedlineHuang, Ling McDonald-Buller, Elena McGaughey, Gary Kimura, Yosuke Allen, David T eng Comparative Study Research Support, U.S. Gov't, Non-P.H.S. 2015/06/13 J Air Waste Manag Assoc. 2015 Oct; 65(10):1194-205. doi: 10.1080/10962247.2015.1057302"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024