Title: | "Impact of VOC removal by activated carbon on biodegradation rates of diesel, Syntroleum and biodiesel in contaminated sand" |
Address: | "Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary; Civil and Environmental Engineering Department, Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775-5900, USA. Civil and Environmental Engineering Department, Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775-5900, USA. Electronic address: sschiewer@alaska.edu" |
DOI: | 10.1016/j.scitotenv.2016.08.005 |
ISSN/ISBN: | 1879-1026 (Electronic) 0048-9697 (Linking) |
Abstract: | "The degradation of conventional diesel (D), synthetic diesel (Syntroleum), and pure fish biodiesel (B100) by indigenous microbes was investigated in laboratory microcosms containing contaminated sand. The fate of volatiles and the influence of volatilization on degradation rates were examined by placing activated carbon (AC) in microcosm headspaces to sorb volatiles. Three AC regimes were compared: no activated carbon (NAC), regular weekly AC change (RAC), and frequent AC change (FAC), where the frequency of activated carbon exchange declined from daily to weekly. Generally, the alternative fuels were biodegraded faster than diesel fuel. Hydrocarbon mineralization percentages for the different fuel types over 28days were between 23% (D) and 48% (B100) in the absence of activated carbon, decreased to 12% (D) - 37% (B100) with weekly AC exchange, and were further reduced to 9-22% for more frequent AC change. Sorption of volatiles to AC lowered their availability as a substrate for microbes, reducing respiration. Volatilization was negligible for the biodiesel. A mass balance for the carbon initially present as hydrocarbons in microcosms with activated carbon in the head space was on average 92% closed, with 45-70% remaining in the soil after 4weeks, 9-37% mineralized and up to 12% volatilized. Based on nutrient consumption, up to 29% of the contaminants were likely converted into biomass" |
Keywords: | "Biodegradation, Environmental Biofuels/*analysis Biomass Carbon Dioxide/analysis Charcoal/*chemistry Gasoline/*analysis *Microbial Consortia Models, Theoretical Soil Pollutants/*analysis Volatile Organic Compounds/*analysis Volatilization Activated carbon;" |
Notes: | "MedlineHorel, Agota Schiewer, Silke eng Netherlands 2016/08/24 Sci Total Environ. 2016 Dec 15; 573:106-114. doi: 10.1016/j.scitotenv.2016.08.005. Epub 2016 Aug 20" |