Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China    Next Abstract[Pollution Characteristics and Source Apportionment of Atmospheric Volatile Organic Compounds in Summer in Yuncheng City] »

Environ Res


Title:Regulating oxygen vacancies and hydroxyl groups of alpha-MnO(2) nanorods for enhancing post-plasma catalytic removal of toluene
Author(s):Wen T; Wang J; Zhang J; Long C;
Address:"State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, China. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. Electronic address: clong@nju.edu.cn"
Journal Title:Environ Res
Year:2023
Volume:20230918
Issue:Pt 1
Page Number:117176 -
DOI: 10.1016/j.envres.2023.117176
ISSN/ISBN:1096-0953 (Electronic) 0013-9351 (Linking)
Abstract:"Although nonthermal plasma (NTP) technology has high removal efficiency for volatile organic compounds (VOCs), it has limited carbon dioxide (CO(2)) selectivity, which hinders its practical application. In this study, alpha-MnO(2) nanorods with tunable oxygen vacancies and hydroxyl groups were synthesized by two-step hydrothermal process to enhance their activity for deep oxidation of toluene. Hydrochloric acid (HCl) was used to assist in synthesis of alpha-MnO(2) nanorods with tunable oxygen vacancies, furtherly, more hydroxyl groups were introduced to HCl-assisted synthesized alpha-MnO(2) by K(+) supplement. The results showed that the as-synthesized nanorods exhibited superior activity, improved by nearly 30% removal efficiency of toluene compared to pristine MnO(2) at SIE = 339 J/L, and reaching high CO(x) selectivity of 72% at SIE = 483 J/L, successfully promoting the deep oxidation of toluene. It was affirmed that oxygen vacancies played an important role in toluene conversion, improving the conversion of ozone (O(3)) and resulting in higher mobility of surface lattice oxygen species. Besides, the enhancement of deep oxidation performance was caused by the increase of hydroxyl groups concentration. In-situ DRIFTS experiments revealed that the adsorbed toluene on catalyst surface was oxidized to benzyl alcohol by surface lattice oxygen, and hydroxyl groups were also found participating in toluene adsorption. Overall, this study provides a new approach to designing catalysts for deep oxidation of VOCs"
Keywords:Deep oxidation Hydroxyl groups Nonthermal plasma Oxygen vacancies Surface lattice oxygen;
Notes:"PublisherWen, Tiancheng Wang, Jing Zhang, Jian Long, Chao eng Netherlands 2023/09/21 Environ Res. 2023 Sep 18; 238(Pt 1):117176. doi: 10.1016/j.envres.2023.117176"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024