Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA Real-Time PCR Assay for the Separation of Autographa gamma (Noctuidae: Plusiinae) From Morphologically Similar Species in North America    Next AbstractVolatile organic compounds emitted by conventional and 'green' cleaning products in the U.S. market »

Talanta


Title:"One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature"
Author(s):Temel F;
Address:"Konya Technical University, Department of Chemical Engineering, 42130, Konya, Turkey. Electronic address: ftemel@ktun.edu.tr"
Journal Title:Talanta
Year:2020
Volume:20200108
Issue:
Page Number:120725 -
DOI: 10.1016/j.talanta.2020.120725
ISSN/ISBN:1873-3573 (Electronic) 0039-9140 (Linking)
Abstract:"This work designs the synthesis of a novel amino morpholine schiff base functionalized calix[4]arene cage (SCC), its deposition onto Quartz Crystal Microbalance (QCM) crystal surface, and usage for the selective detecting of formaldehyde (HCHO). The SCC modified QCM sensor has been characterized by contact angle measurements and microscopy images. Initial experiments revealed that the frequency response decreased significantly which means that there was a good interaction between the SCC molecules and HCHO. The proposed sensor exhibited a linear response towards HCHO in different concentrations ranging from 1.85 to 9.25 ppm, having the high sensitivity (S) and low limit of detection (LOD) being 18.324 Hz/ppm and 0.67 ppm, respectively. Furthermore, the adsorption behavior and mechanism of HCHO onto the QCM sensor were investigated for this sensing system and the adsorption data exhibited a good correlation with the Freundlich and Langmuir-Freundlich adsorption models in terms of the regression coefficient. The QCM sensor showed outstanding selective performance to HCHO among %97 RH and some a number of interfering volatile organic compounds (VOCs) such as chloroform, dichloromethane, acetone, n-hexane, methanol, xylene, and ammonia. Thus, real-time, sensitive, selective and effective recognition of HCHO by the sensor can be explained some adsorption mechanisms such as size-fit concept, three-dimensional structures of molecules and interaction between moieties of the sensible film layer and analyte molecules such as hydrogen bonding interactions"
Keywords:Calix[4]arene QCM formaldehyde sensor Sensitivity Volatile organic compounds;
Notes:"PubMed-not-MEDLINETemel, Farabi eng Netherlands 2020/02/20 Talanta. 2020 May 1; 211:120725. doi: 10.1016/j.talanta.2020.120725. Epub 2020 Jan 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024