Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVisual discrimination between two sexually deceptive Ophrys species by a bee pollinator    Next Abstract"Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal" »

J Mass Spectrom


Title:Theoretical chemical ionization rate constants of the concurrent reactions of hydronium ions (H(3) O(+) ) and oxygen ions (O 2+ ) with selected organic iodides
Author(s):Strekowski RS; Alvarez C; Petrov-Stojanovic J; Hagebaum-Reignier D; Wortham H;
Address:"Aix-Marseille Univ, CNRS, LCE, Marseille, France. Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France"
Journal Title:J Mass Spectrom
Year:2019
Volume:54
Issue:5
Page Number:422 - 428
DOI: 10.1002/jms.4349
ISSN/ISBN:1096-9888 (Electronic) 1076-5174 (Linking)
Abstract:"Short chain volatile iodinated organic compounds (VIOCs) are of great importance in many fields that include atmospheric chemistry, agriculture, and environmental chemistry related to nuclear power plant safety. Proton-transfer-reaction mass spectrometry (PTR-MS) allows for fast, sensitive, and online quantification of VIOCs if the chemical ionization (CI) reaction rate coefficients are known. In this work, the theoretical CI rate coefficients for the reactions of hydronium ions (H(3) O(+) ) and oxygen ions (O 2+ ) with selected atmospherically important short chain VIOCs are determined. The neutral CH(3) I, CH(2) I(2) , C(2) H(5) I, iso-C(3) H(7) I, n-C(3) H(7) I, n-C(4) H(9) I, 2-C(4) H(9) I, n-C(5) H(11) I, 2-C(5) H(11) I, and 3-C(5) H(11) I have been chosen because these compounds are of atmospheric and environmental importance in the field of safety of nuclear plant reactors. Theoretical ion-molecule collision rate coefficients were determined using the Su and Chesnavich theory based on parametrized trajectory calculations. The proton affinity, ionization energy, dipole moment, and polarizability values of the neutral molecules were determined from density functional theory and coupled-cluster calculations. The newly calculated rate constants facilitate the use of the CI mass spectrometry in the atmospheric quantification of selected VIOCs"
Keywords:Ptr-ms Vioc chemical ionization collision rate organic iodides reaction rate coefficient;
Notes:"PubMed-not-MEDLINEStrekowski, Rafal S Alvarez, Coralie Petrov-Stojanovic, Jeanne Hagebaum-Reignier, Denis Wortham, Henri eng 11-RSNR-0013/French National Research Agency (ANR)/ England 2019/03/19 J Mass Spectrom. 2019 May; 54(5):422-428. doi: 10.1002/jms.4349"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024