Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractStructure of a pheromone receptor-associated MHC molecule with an open and empty groove    Next AbstractSubstrate-dependent electronic structure and film formation of MAPbI(3) perovskites »

BMC Evol Biol


Title:Ostrinia revisited: Evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception
Author(s):Olsson SB; Kesevan S; Groot AT; Dekker T; Heckel DG; Hansson BS;
Address:"Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany. solsson@ice.mpg.de"
Journal Title:BMC Evol Biol
Year:2010
Volume:20100916
Issue:
Page Number:285 -
DOI: 10.1186/1471-2148-10-285
ISSN/ISBN:1471-2148 (Electronic) 1471-2148 (Linking)
Abstract:"BACKGROUND: The European Corn Borer, Ostrinia nubilalis (Hubner), is a keystone model for studies on the evolution of sex pheromone diversity and its role in establishing reproductive isolation. This species consists of two sympatric races, each utilizing opposite isomers of the same compound as their major pheromone component. Female production and male response are congruent in each race, and males from each strain exhibit phenotypic differences in peripheral physiology. Both strains possess co-localized pheromone-sensitive olfactory sensory neurons characterized by a larger amplitude action potential (spike) responding to the major pheromone component, and a smaller spike amplitude cell responding to the minor component, i.e. the opposite isomer. These differences in amplitude correspond to differences in dendritic diameter between the two neurons. Previous studies showed that behavioral response to the pheromone blend was sex-linked, but spike amplitude response to pheromone components matched autosomal, not sex-linked inheritance. RESULTS: As part of a larger study to finely map the loci responsible for pheromone communication in this species, we have reanalyzed peripheral physiology among parental, and first and second generation hybrids between the two pheromone strains using tungsten electrode electrophysiology. Our results reveal that differences in spike amplitude ratio between male pheromone-sensitive sensory neurons in O. nubilalis races are controlled, at least partially, by sex-linked genes that exhibit E-strain dominance. CONCLUSIONS: We propose that peripheral olfactory response in O. nubilalis may be affected both by autosomal and sex-linked genes exhibiting a cross-locus dominance effect, and suggest that the genetic basis for pheromone reception and response in the species is more closely linked than previously thought"
Keywords:Analysis of Variance Animals Chimera Electrophysiology Female Male Moths/genetics/*physiology Sensory Receptor Cells/metabolism Sex Attractants/genetics/*metabolism;
Notes:"MedlineOlsson, Shannon B Kesevan, Subaharan Groot, Astrid T Dekker, Teun Heckel, David G Hansson, Bill S eng Research Support, Non-U.S. Gov't England 2010/09/18 BMC Evol Biol. 2010 Sep 16; 10:285. doi: 10.1186/1471-2148-10-285"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024